×

Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space. (English) Zbl 1508.46016

Summary: We study functions of bounded variation with values in a Banach or in a metric space. In finite dimensions, there are three well-known topologies; we argue that in infinite dimensions there is a natural fourth topology. We provide some insight into the structure of these four topologies. In particular, we study the meaning of convergence, duality and regularity for these topologies and provide some useful compactness criteria, also related to the classical Aubin-Lions theorem. After this we study the Borel \(\sigma \)-algebras induced by these topologies, and we provide some results about probability measures on the space of functions of bounded variation, which can be used to study stochastic processes of bounded variation.

MSC:

46E10 Topological linear spaces of continuous, differentiable or analytic functions
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E40 Spaces of vector- and operator-valued functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. Ambrosio. Metric space valued functions of bounded variation. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, \[4^e4\] e série, 17(3):439-478, 1990. · Zbl 0724.49027
[2] L. Ambrosio and S. Di Marino. Equivalent definitions of BV space and of total variation on metric measure spaces. Journal of Functional Analysis, 266(7):4150-4188, 2014. · Zbl 1302.26012 · doi:10.1016/j.jfa.2014.02.002
[3] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, NY, USA, 2006. · Zbl 0957.49001
[4] L. Ambrosio and R. Ghezzi. Sobolev and bounded variation functions on metric measure spaces (lecture notes). http://cvgmt.sns.it/paper/2738/, 2016. · Zbl 1362.53002
[5] L. Ambrosio, R. Ghezzi, and V. Magnani. BV functions and sets of finite perimeter in sub-Riemannian manifolds. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire, 32(3):489-517, 2015. · Zbl 1320.53034 · doi:10.1016/j.anihpc.2014.01.005
[6] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures. Birkhauser, Basel, Switzerland, 2nd edition, 2008. · Zbl 1145.35001
[7] L. Bertini, A. Faggionato, and D. Gabrielli. Large deviations of the empirical flow for continuous time markov chains. Annales de l’Institut Henri Poincaré - Probabilités et Statistiques, 51(3):867-900, 2015. · Zbl 1323.60045 · doi:10.1214/14-AIHP601
[8] V. I. Bogachev. Measure theory. Vol. I & II. Springer-Verlag, Berlin, Germany, 2007. · Zbl 1120.28001
[9] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland, Amsterdam, 1973. · Zbl 0252.47055
[10] D. Chiron. On the definitions of Sobolev and BV spaces into singular spaces and the trace problem. Communications in Contemporary Mathematics, 9(4):473, 2007. · Zbl 1221.46031 · doi:10.1142/S0219199707002502
[11] V. V. Chistyakov. Selections of bounded variation. Journal of Applied Analysis, 10(1):1-82, 2004. · Zbl 1077.26015 · doi:10.1515/JAA.2004.1
[12] J.B. Conway. A course in functional analysis. Springer, New York, NY, USA, 2nd edition, 2007. · doi:10.1007/978-1-4757-4383-8
[13] S. Di Marino. Sobolev and BV spaces on metric measure spaces via derivations and integration by parts. http://cvgmt.sns.it/paper/2521, 2014.
[14] J. Diestel and J. J. Jr. Uhl. Vector Measures, volume 95. American Mathematical Society, Providence, RI, 1967.
[15] N. Dinculeanu. Vector Measures. Pergamon press / Deutscher Verlag der Wissenschaften, Berlin, Germany, 1967. · Zbl 0156.14902
[16] N. Dunford and J.T. Schwartz. Linear operators, part one: general theory. Interscience, New York, NY, USA, 1957.
[17] L.C. Evans and R.F. Gariepy. Measure theory and fine properties of functions. CRC Press, Boca Raton, FL, USA, 1992. · Zbl 0804.28001
[18] H. Federer. Geometric measure theory. Springer, Berlin, Germany, 1969. · Zbl 0176.00801
[19] A. Jakubowski. A non-Skorokhod topology on the Skorokhod space. Electronic Journal of Probability, 2(4):1-21, 1997. · Zbl 0890.60003
[20] P. Krejčí. Regulated evolution quasivariational inequalities. Notes to Lectures held at the University of Pavia, 2003.
[21] P. Krejčí. The Kurzweil integral and hysteresis. In Journal of Physics: Conference Series, volume 55, page 144. IOP Publishing, 2006.
[22] P. Logaritsch and E. Spadaro. A representation formula for the p-energy of metric space-valued Sobolev maps. Communications in Contemporary Mathematics, 14(6):1250043, 2012. · Zbl 1260.58008 · doi:10.1142/S0219199712500435
[23] T.-W. Ma. Banach-Hilbert Spaces, Vector Measures and Group Representations. World Scientific, Singapore, 2002.
[24] A. Mainik and A. Mielke. Existence results for energetic models for rate-independent systems. Calculus of Variations and Partial Differential Equations, 22(1):73-99, 2005. · Zbl 1161.74387 · doi:10.1007/s00526-004-0267-8
[25] P.A. Meyer and W.A. Zheng. Tightness criteria for laws of semimartingales. Annales de l’I.H.P., section B, 20(4):353-372, 1984. · Zbl 0551.60046
[26] A. Mielke and T. Roubicek. Rate-Independent Systems. Springer, Berlin, Germany, 2015. · Zbl 1339.35006 · doi:10.1007/978-1-4939-2706-7
[27] A. Mielke, F. Theil, and V. I. Levitas. A variational formulation of rate-independent phase transformations using an extremum principle. Archive for Rational Mechanics and Analysis, 162(2):137-177, 2012. · Zbl 1012.74054 · doi:10.1007/s002050200194
[28] J. J. Moreau, P. D. Panagiotopoulos, and G. Strang. Topics in nonsmooth mechanics. Birkhäuser, Basel, Switzerland, 1988. · Zbl 0646.00014 · doi:10.1007/978-3-7091-2624-0
[29] R. I. A. Patterson and D. R. M. Renger. Large deviations of reaction fluxes. arXiv:1802.02512, 2018.
[30] V. Recupero. BV solutions of rate independent variational inequalities. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze-Serie V, 10(2):269, 2011. · Zbl 1229.49012
[31] V. Recupero. Hysteresis operators in metric spaces. Discrete Contin. Dyn. Syst. Ser. S, 8:773-792, 2015. · Zbl 1302.74131 · doi:10.3934/dcdss.2015.8.773
[32] W. Rudin. Functional Analysis. McGraw-Hill, New York, NY, 1973. · Zbl 0253.46001
[33] J. Simon. Compact sets in the space \[L^p(0,T;B)\] Lp(0,T;B). Annali di Matematica pura ed applicata, 146(1):65-96, 1986. · Zbl 0629.46031 · doi:10.1007/BF01762360
[34] A. Visintin. Differential models of hysteresis. Springer Science & Business Media, Berlin, Germany, 2013. · Zbl 0820.35004
[35] A. Wiweger. Linear spaces with mixed topology. Studia Mathematica, 20(1):47-68, 1961. · Zbl 0097.31301 · doi:10.4064/sm-20-1-47-68
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.