×

zbMATH — the first resource for mathematics

Quantum BRST charge in gauge theories in curved space-time. (English) Zbl 1406.81067
Summary: Renormalized gauge-invariant observables in gauge theories form an algebra which is obtained as the cohomology of the derivation \(\left[\mathbf{Q}_L, -\right],\; \text{with}\; \mathbf {Q}_{L}\) as the renormalized interacting quantum BRST charge. For a large class of gauge theories in Lorentzian globally hyperbolic space-times, we derive an identity in renormalized perturbation theory which expresses the commutator \([\mathbf{Q}_{L}, -]\) in terms of a new nilpotent quantum BRST (Becchi, Rouet, Stora, Tyutin) differential and a new quantum anti-bracket which differ from their classical counterparts by certain quantum corrections. This identity enables us to prove different manifestations of gauge symmetry preservation at the quantum level in a model-independent fashion.{
©2019 American Institute of Physics}

MSC:
81T20 Quantum field theory on curved space or space-time backgrounds
81T13 Yang-Mills and other gauge theories in quantum field theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
51M10 Hyperbolic and elliptic geometries (general) and generalizations
Software:
pAQFT
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Alfaro, J.; Damgaard, P. H., Non-abelian antibrackets, Phys. Lett. B, 369, 3, 289-294, (1996)
[2] Barnich, G.; Brandt, F.; Henneaux, M., General solution of the Wess-Zumino consistency condition for Einstein gravity, Phys. Rev. D, 51, 4, R1435, (1995)
[3] Barnich, G.; Brandt, F.; Henneaux, M., Local BRST cohomology in gauge theories, Phys. Rep., 338, 439-569, (2000) · Zbl 1097.81571
[4] Brennecke, F.; Dutsch, M., Removal of violations of the master Ward identity in perturbative QFT, Rev. Math. Phys., 20, 119-172, (2008) · Zbl 1149.81017
[5] Brunetti, R.; Fredenhagen, K.; Kohler, M., The microlocal spectrum condition and Wick polynomials of free fields on curved space-times, Commun. Math. Phys., 180, 633-652, (1996) · Zbl 0923.58052
[6] Brunetti, R.; Fredenhagen, K., Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds, Commun. Math. Phys., 208, 623-661, (2000) · Zbl 1040.81067
[7] Brunetti, R.; Fredenhagen, K.; Rejzner, K., Quantum gravity from the point of view of locally covariant quantum field theory, Commun. Math. Phys., 345, 3, 741-779, (2016) · Zbl 1346.83001
[8] Brunetti, R.; Fredenhagen, K.; Verch, R., The generally covariant locality principle: A new paradigm for local quantum field theory, Commun. Math. Phys., 237, 31-68, (2003) · Zbl 1047.81052
[9] Costello, K., Renormalization and Effective Field Theory, (2011), Mathematical Surveys and Monographs · Zbl 1221.81004
[10] Costello, K. J., Renormalisation and the Batalin-Vilkovisky Formalism
[11] Costello, K. J.; Gwilliam, O., Factorization Algebras in Quantum Field Theory, (2016)
[12] Curci, G.; Ferrari, R., An alternative approach to the proof of unitarity for gauge theories, Il Nuovo Cimento A, 35, 3, 273-279, (1976)
[13] de Medeiros, P.; Hollands, S., Superconformal quantum field theory in curved spacetime, Classical Quantum Gravity, 30, 175015, (2013) · Zbl 1276.83046
[14] DeWitt, B.; DeWitt-Morette, C., From the Peierls bracket to the Feynman functional integral, Ann. Phys, 314, 448-463, (2004) · Zbl 1078.81026
[15] DeWitt, B. S.; Brehme, R. W., Radiation damping in a gravitational field, Ann. Phys., 9, 2, 220-259, (1960) · Zbl 0092.45003
[16] Dütsch, M.; Fredenhagen, K., A local (perturbative) construction of observables in gauge theories: The example of QED, Commun. Math. Phys., 203, 1, 71-105, (1999) · Zbl 0938.81028
[17] Epstein, H.; Glaser, V., The role of locality in perturbation theory, Ann. l’IHP Phys. Théor., 19, 211-295, (1973) · Zbl 1216.81075
[18] Fredenhagen, K.; Rejzner, K., Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory, Commun. Math. Phys., 317, 697-725, (2013) · Zbl 1263.81245
[19] Fröb, M. B., Anomalies in time-ordered products and applications to the BV-BRST formulation of quantum gauge theories, (2018)
[20] Fröb, M. B.; Holland, J.; Hollands, S., All-order bounds for correlation functions of gauge-invariant operators in Yang-Mills theory, J. Math. Phys., 57, 12, 122301, (2016) · Zbl 1356.81167
[21] Henneaux, M.; Teitelboim, C., Quantization of Gauge Systems, (1992), Princeton University Press · Zbl 0838.53053
[22] Hollands, S., Renormalized quantum Yang-Mills fields in curved spacetime, Rev. Math. Phys., 20, 1033-1172, (2008) · Zbl 1161.81022
[23] Hollands, S.; Wald, R. M., Local Wick polynomials and time ordered products of quantum fields in curved space-time, Commun. Math. Phys., 223, 289-326, (2001) · Zbl 0989.81081
[24] Hollands, S.; Wald, R. M., Existence of local covariant time ordered products of quantum fields in curved space-time, Commun. Math. Phys., 231, 309-345, (2002) · Zbl 1015.81043
[25] Hollands, S.; Wald, R. M., On the renormalization group in curved space-time, Commun. Math. Phys., 237, 123-160, (2003) · Zbl 1059.81138
[26] Hollands, S.; Wald, R. M., Quantum fields in curved spacetime, Phys. Rep., 574, 1-35, (2015) · Zbl 1357.81144
[27] Iyer, V.; Wald, R. M., Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D, 50, 846-864, (1994)
[28] Källén, G., Formal integration of the equations of quantum theory in the Heisenberg representation, Ark. Fys., 2, 37, 371-385, (1950), 10.1007/978-3-319-00627-7_89; Källén, G., Formal integration of the equations of quantum theory in the Heisenberg representation, Ark. Fys., 2, 37, 371-385, (1950), 10.1007/978-3-319-00627-7_89;
[29] Khavkine, I.; Moretti, V., Analytic dependence is an unnecessary requirement in renormalization of locally covariant QFT, Commun. Math. Phys., 344, 2, 581-620, (2016) · Zbl 1351.81081
[30] Kopper, C., Renormalization theory based on flow equations, Prog. Math., 251, 161-174, (2007) · Zbl 1166.81350
[31] Kugo, T.; Ojima, I., Local covariant operator formalism of nonabelian gauge theories and quark confinement problem, Prog. Theor. Phys. Suppl., 66, 1-130, (1979)
[32] Muller, V. F., Perturbative renormalization by flow equations, Rev. Math. Phys., 15, 491, (2003) · Zbl 1081.81543
[33] Polchinski, J., Renormalization and effective Lagrangians, Nucl. Phys. B, 231, 269-295, (1984)
[34] Radzikowski, M. J., Micro-local approach to the Hadamard condition in quantum field theory on curved space-time, Commun. Math. Phys., 179, 529-553, (1996) · Zbl 0858.53055
[35] Rejzner, K., Fermionic fields in the functional approach to classical field theory, Rev. Math. Phys., 23, 1009-1033, (2011) · Zbl 1242.81112
[36] Rejzner, K., Remarks on local symmetry invariance in perturbative algebraic quantum field theory, Ann. Henri Poincare, 16, 1, 205-238, (2015) · Zbl 1306.81137
[37] Taslimi Tehrani, M., “Gauge-fixing independence in gauge theories in curved space-time” (unpublished). · Zbl 1255.83092
[38] Taslimi Tehrani, M., Self-consistency of conformally coupled ABJM theory at the quantum level, J. High Energy Phys., 2017, 11, 153 · Zbl 1383.83193
[39] Taslimi Tehrani, M.; Zahn, J., Background independence in gauge theories, (2018)
[40] Wald, R. M., On identically closed forms locally constructed from a field, J. Math. Phys., 31, 10, 2378-2384, (1990) · Zbl 0728.53064
[41] Weinberg, S., The quantum theory of fields, Modern Applications, (2013), Cambridge University Press
[42] Wetterich, C., Exact evolution equation for the effective potential, Phys. Lett. B, 301, 90-94, (1993)
[43] Zinn-Justin, J.; Rollnik, H.; Dietz, K., Renormalization of gauge theories, Trends in Elementary Particle Physics, 1-39, (1975), Springer Verlag: Springer Verlag, Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.