×

zbMATH — the first resource for mathematics

Propagators for gauge-invariant observables in cosmology. (English) Zbl 1391.83140

MSC:
83F05 Relativistic cosmology
85A40 Astrophysical cosmology
83C45 Quantization of the gravitational field
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Guth, A. H., Inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D, 23, 347, (1981) · Zbl 1371.83202
[2] Sato, K., First-order phase transition of a vacuum and the expansion of the Universe, Mon. Not. R. Astron. Soc., 195, 467, (1981)
[3] Linde, A. D., A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B, 108, 389, (1982)
[4] Albrecht, A.; Steinhardt, P. J., Cosmology for grand Unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett., 48, 1220, (1982)
[5] (Planck, Collaboration); Ade, P. A R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13, (2016)
[6] (Planck, Collaboration); Ade, P. A R., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys., 594, A17, (2016)
[7] (Planck, Collaboration); Ade, P. A R., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys., 594, A20, (2016)
[8] Burgess, C. P., Quantum gravity in everyday life: general relativity as an effective field theory, Living Rev. Rel., 7, 5, (2004) · Zbl 1070.83009
[9] Canepa, G.; Dappiaggi, C.; Khavkine, I., IDEAL characterization of isometry classes of FLRW and inflationary spacetimes, Class. Quantum Grav., 35, (2018) · Zbl 1382.83127
[10] Fröb, M. B.; Hack, T-P; Higuchi, A., Compactly supported linearised observables in single-field inflation, J. Cosmol. Astropart. Phys., JCAP07(2017), 043, (2017)
[11] Torre, C. G., Gravitational observables and local symmetries, Phys. Rev. D, 48, R2373, (1993)
[12] Giddings, S. B.; Marolf, D.; Hartle, J. B., Observables in effective gravity, Phys. Rev. D, 74, (2006)
[13] Khavkine, I., Local and gauge invariant observables in gravity, Class. Quantum Grav., 32, (2015) · Zbl 1327.83125
[14] Ware, J.; Saotome, R.; Akhoury, R., Construction of an asymptotic S matrix for perturbative quantum gravity, J. High Energy Phys., JHEP10(2013), 159, (2013)
[15] Donnelly, W.; Giddings, S. B.; Donnelly, W.; Giddings, S. B., Diffeomorphism-invariant observables and their nonlocal algebra. Diffeomorphism-invariant observables and their nonlocal algebra, Phys. Rev. D. Phys. Rev. D, 94, (2016)
[16] Donnelly, W.; Giddings, S. B., Observables, gravitational dressing, and obstructions to locality and subsystems, Phys. Rev. D, 94, (2016)
[17] Mandelstam, S., Quantization of the gravitational field, Ann. Phys., 19, 25, (1962) · Zbl 0109.20905
[18] Mandelstam, S., Feynman rules for the gravitational field from the coordinate-independent field-theoretic formalism, Phys. Rev., 175, 1604, (1968)
[19] Teitelboim, C., Gravitation theory in path space, Nucl. Phys. B, 396, 303, (1993)
[20] Woodard, R. P., Invariant Formulation of and Radiative Corrections in Quantum Gravity, (1983), Cambridge, MA: Harvard University, Cambridge, MA
[21] Tsamis, N. C.; Woodard, R. P., Physical Green’s functions in quantum gravity, Ann. Phys., 215, 96, (1992)
[22] Modanese, G., Vacuum correlations at geodesic distance in quantum gravity, Riv. Nuovo Cim., 17N8, 1, (1994)
[23] Urakawa, Y.; Tanaka, T., Influence on observation from IR divergence during inflation. I, Prog. Theor. Phys., 122, 779, (2009) · Zbl 1180.83114
[24] Urakawa, Y.; Tanaka, T., Influence on observation from IR divergence during inflation: multi field inflation, Prog. Theor. Phys., 122, 1207, (2010) · Zbl 1186.83177
[25] Khavkine, I., Quantum astrometric observables: time delay in classical and quantum gravity, Phys. Rev. D, 85, (2012)
[26] Bonga, B.; Khavkine, I., Quantum astrometric observables. II. Time delay in linearized quantum gravity, Phys. Rev. D, 89, (2014)
[27] Fröb, M. B., One-loop quantum gravitational corrections to the scalar two-point function at fixed geodesic distance, Class. Quantum Grav., 35, (2018) · Zbl 1382.83042
[28] Marolf, D., Comments on microcausality, chaos, and gravitational observables, Class. Quantum Grav., 32, (2015) · Zbl 1331.83046
[29] Brunetti, R.; Fredenhagen, K.; Rejzner, K., Quantum gravity from the point of view of locally covariant quantum field theory, Commun. Math. Phys., 345, 741, (2016) · Zbl 1346.83001
[30] Géhéniau, J.; Debever, R., Les invariants de courbure de lespace de Riemann à quatre dimensions, Bull. Acad. R. Belg., Cl. Sci., 42, 114, (1956) · Zbl 0073.16902
[31] Géhéniau, J., Les invariants de courbure des espaces Riemanniens de la relativité, Bull. Acad. R. Belg., Cl. Sci., 42, 252, (1956) · Zbl 0073.16903
[32] Debever, R., Étude géométrique du tenseur de Riemann–Christoffel des espaces de Riemann à quatre dimensions, Bull. Acad. R. Belg., Cl. Sci., 42, 313, (1956) · Zbl 0075.31201
[33] Debever, R., Bull. Acad. R. Belg., Cl. Sci., 42, 608, (1956)
[34] Géhéniau, J.; Debever, R., Les quatorze invariants de courbure de l’espace riemannien à quatre dimensions, Helv. Phys. Acta, 29, 101, (1956) · Zbl 0073.16902
[35] Komar, A., Construction of a complete set of independent observables in the general theory of relativity, Phys. Rev., 111, 1182, (1958) · Zbl 0082.21003
[36] Bergmann, P. G.; Komar, A. B., Poisson brackets between locally defined observables in general relativity, Phys. Rev. Lett., 4, 432, (1960)
[37] Bergmann, P. G., Observables in general relativity, Rev. Mod. Phys., 33, 510, (1961) · Zbl 0098.42501
[38] Tambornino, J., Relational observables in gravity: a review, Sigma, 8, 017, (2012) · Zbl 1242.83047
[39] Brown, J. D.; Kuchař, K. V., Dust as a standard of space and time in canonical quantum gravity, Phys. Rev. D, 51, 5600, (1995)
[40] Brunetti, R.; Fredenhagen, K.; Hack, T-P; Pinamonti, N.; Rejzner, K., Cosmological perturbation theory and quantum gravity, J. High Energy Phys., JHEP08(2016), 032, (2016) · Zbl 1390.83059
[41] Misner, C.; Thorne, K.; Wheeler, J. A., Gravitation, (1973), San Francisco: Freeman, San Francisco
[42] Geshnizjani, G.; Brandenberger, R., Back reaction and local cosmological expansion rate, Phys. Rev. D, 66, (2002)
[43] Abramo, L. R.; Woodard, R. P., Scalar measure of the local expansion rate, Phys. Rev. D, 65, (2002)
[44] Geshnizjani, G.; Brandenberger, R., Back-reaction of perturbations in two scalar field inflationary models, J. Cosmol. Astropart. Phys., JCAP04(2005), 006, (2005)
[45] Gasperini, M.; Marozzi, G.; Veneziano, G., A covariant and gauge invariant formulation of the cosmological ‘backreaction’, J. Cosmol. Astropart. Phys., JCAP02(2010), 009, (2010)
[46] Marozzi, G.; Vacca, G. P., Isotropic observers and the inflationary backreaction problem, Class. Quantum Grav., 29, (2012) · Zbl 1246.83262
[47] Tsamis, N. C.; Woodard, R. P., Pure gravitational back-reaction observables, Phys. Rev. D, 88, (2013)
[48] Miao, S. P.; Tsamis, N. C.; Woodard, R. P., Invariant measure of the one-loop quantum gravitational backreaction on inflation, Phys. Rev. D, 95, (2017)
[49] Liddle, A. R.; Parsons, P.; Barrow, J. D., Formalizing the slow-roll approximation in inflation, Phys. Rev. D, 50, 7222, (1994)
[50] Hollands, S.; Wald, R. M., Local Wick polynomials and time ordered products of quantum fields in curved space-time, Commun. Math. Phys., 223, 289, (2001) · Zbl 0989.81081
[51] Hollands, S.; Wald, R. M., Existence of local covariant time ordered products of quantum fields in curved space-time, Commun. Math. Phys., 231, 309, (2002) · Zbl 1015.81043
[52] Hollands, S.; Wald, R. M., Conservation of the stress tensor in interacting quantum field theory in curved spacetimes, Rev. Math. Phys., 17, 227, (2005) · Zbl 1078.81062
[53] Hollands, S., Renormalized quantum Yang–Mills fields in curved spacetime, Rev. Math. Phys., 20, 1033, (2008) · Zbl 1161.81022
[54] Fredenhagen, K.; Rejzner, K., Batalin–Vilkovisky formalism in perturbative algebraic quantum field theory, Commun. Math. Phys., 317, 697, (2013) · Zbl 1263.81245
[55] Hollands, S.; Wald, R. M., Quantum fields in curved spacetime, Phys. Rep., 574, 1, (2015) · Zbl 1357.81144
[56] Hack, T-P, Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes, (2015), Berlin: Springer, Berlin
[57] Fredenhagen, K.; Rejzner, K., Quantum field theory on curved spacetimes: axiomatic framework and examples, J. Math. Phys., 57, (2016) · Zbl 1338.81299
[58] Fröb, M. B., Gauge-invariant quantum gravitational corrections to correlation functions, (2017)
[59] Fröb, M. B., The Weyl tensor correlator in cosmological spacetimes, J. Cosmol. Astropart. Phys., JCAP12(2014), 010, (2014)
[60] Mukhanov, V. F.; Feldman, H.; Brandenberger, R. H., Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rep., 215, 203, (1992)
[61] Fröb, M. B.; Higuchi, A., Mode-sum construction of the two-point functions for the Stueckelberg vector fields in the Poincaré patch of de Sitter space, J. Math. Phys., 55, (2014) · Zbl 1294.81135
[63] Tsamis, N. C.; Woodard, R. P., The physical basis for infra-red divergences in inflationary quantum gravity, Class. Quantum Grav., 11, 2969, (1994)
[64] Janssen, T. M.; Miao, S. P.; Prokopec, T.; Woodard, R. P., Infrared propagator corrections for constant deceleration, Class. Quantum Grav., 25, (2008) · Zbl 1255.83151
[65] Ford, L. H.; Parker, L., Infrared divergences in a class of Robertson–Walker Universes, Phys. Rev. D, 16, 245, (1977)
[66] Ford, L. H.; Parker, L., Quantized gravitational wave perturbations in Robertson–Walker universes, Phys. Rev. D, 16, 1601, (1977)
[67] Hadamard, J., Le Problème de Cauchy et les Équations aux Dérivées Partielles Linéaires Hyperboliques, (1932), Paris: Hermann et Cie., Paris
[68] DeWitt, B. S.; Brehme, R. W., Radiation damping in a gravitational field, Ann. Phys., 9, 220, (1960) · Zbl 0092.45003
[69] Fulling, S. A.; Sweeny, M.; Wald, R. M., Singularity structure of the two-point function in quantum field theory in curved spacetime, Commun. Math. Phys., 63, 257, (1978) · Zbl 0401.35065
[70] Bär, C.; Ginoux, N.; Pfäffle, F., Wave Equations on Lorentzian Manifolds and Quantization, (2007), Zürich: European Mathematical Society, Zürich · Zbl 1118.58016
[71] Lidsey, J. E.; Liddle, A. R.; Kolb, E. W.; Copeland, E. J.; Barreiro, T.; Abney, M., Reconstructing the inflation potential: an overview, Rev. Mod. Phys., 69, 373, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.