zbMATH — the first resource for mathematics

The context of inference. (English) Zbl 1427.03015
Summary: There is an ambiguity in the concept of deductive validity that went unnoticed until the middle of the twentieth century. Sometimes an inference rule is called valid because its conclusion is a theorem whenever its premises are. But often something different is meant: The rule’s conclusion follows from its premises even in the presence of other assumptions. In many logical environments, these two definitions pick out the same rules. But other environments are context-sensitive, and in these environments the second notion is stronger. Sorting out this ambiguity has led to profound mathematical investigations with applications in complexity theory and computer science. The origins of this ambiguity and the history of its resolution deserve philosophical attention, because our understanding of logic stands to benefit from their details.
I am eager to examine together with you, Crito, whether this argument will appear in any way different to me in my present circumstances, or whether it remains the same, whether we are to abandon it or believe in it. – Plato Crito, 46d
03A05 Philosophical and critical aspects of logic and foundations
Full Text: DOI
[1] Van Atten, M.2009. ‘The development of intuitionistic logic’, in E. Zalta, Stanford Encyclopedia of Philosophy.
[2] Brouwer, L. E. J.1928. ‘Mathematics, science, and language’, in W. Ewald, From Kant to Hilbert: A Sourcebook in the Foundations of Mathematics, New York: Oxford University Press, 1175-85.
[3] Chagrov, A. V., Decidable modal logic with undecidable admissibility problem, Algebra and Logic, 31, 53-61 (1992) · Zbl 0782.03005
[4] Citkin, A. I., On admissible rules of intuitionistic propositional logic, Mathematics of the USSR-Sbornik, 31, 279-88 (1977) · Zbl 0386.03011
[5] Currie, G., Remarks on Frege’s conception of inference, Notre Dame Journal of Formal Logic, 28, 1, 55-68 (1987) · Zbl 0635.03001
[6] Van Dalen, D., Mystic, Geometer, and Intuitionist: The Life of L. E. J. Brouwer, vol. II. Hope and Disillusion (2005), New York: Oxford University Press, New York
[7] Dawson, J. W., The compactness of first-order logic: from Gödel to Lindström, History and Philosophy of Logic, 14, 1, 15-37 (1993) · Zbl 0794.03001
[8] Franks, C., Cut as consequence, History and Philosophy of Logic, 31, 4, 349-79 (2010) · Zbl 1298.03005
[9] Franks, C.2017. ‘Glivenko’s theorem’, .
[10] Frege, G.1879. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle: L. Nebert. Translated by T. W. Bynum as Conceptual Notation: A Formula Language of Pure Thought Modeled upon the Formula Language of Arithmetic, in T. W. Bynum, Conceptual Notation and Related Articles, New York: Oxford University Press, 101-208.
[11] Frege, G., Über die wissenschaftliche Berechtigung einer Begriffsschrift, Zeitschrift für Philosophie und philosophische Kritik, 81, 48-56 (1882)
[12] Frege, G., Über den Zweck der Begriffsschrift, Sitzungsberichte der Jenaischen Gesellschaft für Medizin und Naturwissenschaft für das Jahr 1882, 16, 1-10 (1883)
[13] Frege, G.1906. ‘Foundations of geometry: second series’, translated and reprinted in G. Frege, Collected Papers, B. F. McGuiness (ed.). Oxford: Blackwell, 293-340.
[14] Frege, G.1910. ‘Letter to Jourdain’, translated and reprinted in G. Frege, Philosophical and Mathematical Correspondence, G. Gabriel, et al. (eds.). Chicago: University of Chicago Press.
[15] Frege, G.1917. ‘Letter to Dingler’, translated and reprinted in G. Frege, Philosophical and Mathematical Correspondence, G. Gabriel, et al. (eds.). Chicago: University of Chicago Press.
[16] Frege, G.1918. ‘Negation’, translated and reprinted in G. Frege, Collected Papers, B. F. McGuiness (ed.). Oxford: Blackwell.
[17] Frege, G.1923. ‘Compound thoughts’, translated and reprinted in G. Frege, Collected Papers, B. F. McGuiness (ed.). Oxford: Blackwell.
[18] Frege, G.1980. Philosophical and Mathematical Correspondence, G. Gabriel, et al. (eds.). Chicago: University of Chicago Press.
[19] Gentzen, G., Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen, Mathematische Annalen, 107, 329-50 (1932) · Zbl 0005.33803
[20] Gentzen, G.1934-35. ‘Untersuchungen über das logische Schliessen’. Gentzen’s doctoral thesis at the University of Göttingen, translated as ‘Investigations into logical deduction’, in M. E. Szabo, The Collected Papers of Gerhard Gentzen, London: North Holland, 68-131.
[21] Glivenko, V., Sur quelques points de la logique de M. Brouwer, Bulletin Academie des Sciences de Belgique, 15, 5, 183-88 (1929) · JFM 55.0030.05
[22] Gödel, K., Die Vollständigkeit der Axiome des logischen Functionenkalküls, Monatshefte für Mathematik und Physik, 37, 349-60 (1930) · JFM 56.0046.04
[23] Gödel, K., Zum intuitionistischen Aussagenkalkül, Anzeiger der Akademie der Wissenschaftischen in Wien, 69, 65-66 (1932) · JFM 58.1001.03
[24] Gurevich, Y.1984. ‘Toward logic tailored for computational complexity’, in M. Richter, et al., Computation and Proof Theory, Springer Lecture Notes in Mathematics, Vol. 1104, 175-216.
[25] Hakli, R.; Negri, S., Does the deduction theorem fail for modal logic?, Synthese, 187, 3, 849-67 (2012) · Zbl 1275.03091
[26] Harrop, R., On disjunctions and existential statements in intuitionistic systems of logic, Mathematische Annalen, 132, 347-61 (1956) · Zbl 0071.24504
[27] Heyting, A., Intuitionism: An Introduction (1956), Amsterdam: North Holland, Amsterdam · Zbl 0070.00801
[28] Iemhoff, R.2001. Provability Logic and Admissible Rules, Ph.D. thesis, Institute for Logic, Language, and Computation, Universiteit van Amsterdam.
[29] Iemhoff, R., Consequence relations and admissible rules, Journal of Philosophical Logic, 45, 3, 327-48 (2016) · Zbl 1392.03021
[30] Johansson, I., Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus, Compositio Mathematica, 4, 119-36 (1937) · JFM 62.1045.08
[31] De Jongh, D. H. J.1968. Investigations on the Intuitionistic Propositional Calculus, Ph.D. thesis, University of Wisconsin, Madison.
[32] Kleene, S. C., On the interpretation of intuitionistic number theory, Journal of Symbolic Logic, 10, 109-24 (1945) · Zbl 0063.03260
[33] Kolmogorov, A., О принципе tertium non datur, Sbornik: Mathematics, 32, 4, 646-67 (1925)
[34] Koslow, A., A Structuralist Theory of Logic (1992), Cambridge: Cambridge University Press, Cambridge · Zbl 0813.03001
[35] Kreisel, G.; Putnam, H., Eine Unableitbarkeitsbeweism ethode für den Intuitionistischen Aussagenkalkül, Zeitschrift für Mathematische Logik and Grundlagen der Mathematik, 3, 74-78 (1957) · Zbl 0079.00702
[36] Lawvere, F. W., An elementary theory of the category of sets, Proceedings of the National Academy of Sciences, 52, 6, 1506-11 (1964) · Zbl 0141.00603
[37] Lorenzen, P., Einführung in die operative Logik und Mathematik (1955), Berlin: Springer, Berlin
[38] Łukasiewicz, J., On the intuitionistic theory of deduction, Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, series A, 55, 202-12 (1952) · Zbl 0048.00401
[39] Van Der Molen, T.2016. ‘The Johansson/Heyting Letters and the Birth of Minimal Logic’, Institute for Logic, Language, and Computation, Amsterdam.
[40] Plato. ‘Crito’, translated by G. M. A. Grube 1997, in J. M. Cooper, Plato: Complete Works, Indianapolis: Hackett.
[41] Quine, W. V. O., Philosophy of Logic (1970), Minneapolis, MN: Prentice-Hall, Minneapolis, MN
[42] Robinson, A., On the Metamathematics of Algebra (1951), Amsterdam: North Holland, Amsterdam · Zbl 0043.24702
[43] Rose, G. F., Propositional calculus and realizability, Transactions of the American Mathematical Society, 75, 1-19 (1953) · Zbl 0053.19901
[44] Rybakov, V. V., Rules of inference with parameters for intuitionistic logic, The Journal of Symbolic Logic, 57, 3, 912-23 (1992) · Zbl 0788.03007
[45] Rybakov, V., Admissibility of Logical Inference Rules (1997), Amsterdam: Elsevier, Amsterdam · Zbl 0872.03002
[46] Schroeder-Heister, P.2008. ‘Lorenzen’s operative justification of intuitionistic logic’, in M. van Atten, P. Boldini, M. Bourdeau, G. Heinzmann, One Hundred Years of Intuitionism (1907-2007), Basel: Birkhäuser.
[47] Skolem, T., Review: Paul Lorenzen, Einfuhrung in die Operative Logik und Mathematik, The Journal of Symbolic Logic, 22, 3, 289-90 (1957)
[48] Smith, N. J. J., Frege’s judgement stroke and the conception of logic as the study of inference not consequence, Philosophy Compass, 4, 4, 639-65 (2009)
[49] Solovay, R. M., Provability interpretations of modal logic, Israel Journal of Mathematics, 25, 287-304 (1976) · Zbl 0352.02019
[50] Stoothoff, R. H., Note on a doctrine of Frege, Mind, 72, 287, 406-8 (1963)
[51] Terwijn, S. A.2004. ‘Intuitionistic logic and computation’, Vriendenboek ofwel Liber Amicorum ter gelegenheid van het afscheid van Dick de Jongh, Institute for Logic, Language, and Computation, Amsterdam.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.