The biharmonic Neumann problem in Lipschitz domains.(English)Zbl 1216.35021

From the introduction: Let $$\Omega\subset\mathbb R^n$$, $$n\geq 2$$, be a bounded Lipschitz domain with connected boundary $$\partial\Omega$$. The main purpose of this article is to solve the following Neumann problem for the biharmonic equation in Lipschitz domains:
$\Delta^2u=0, \tag{1}$
$\nu\Delta u+(1-\nu)\frac{\partial^2u}{\partial N^2}=f_0, \tag{2}$
$\frac{\partial\Delta u}{\partial N}+(1-\nu)\frac 12\frac{\partial}{\partial T_{ij}}\left(\frac{\partial^2u}{\partial N\partial T_{ij}}\right)=\Lambda_0. \tag{3}$
Here $$f_0$$ is prescribed in an appropriate Lebesgue space $$L^p(\partial\Omega)$$ with respect to the surface measure $$ds$$, $$\Lambda_0$$ is a linear functional prescribed in the dual space to the Sobolev space $$W^{1,p'}(\partial\Omega)$$ with respect to the surface measure, and $$\nu$$ is a constant known as the Poisson ratio. A unique solution $$u$$ (modulo linear functions) is obtained in the class of solutions with nontangential maximal function of the second-order derivatives in $$L^p(\partial\Omega)$$.
$$N$$ denotes the outer unit normal vector to the domain, and $$T$$ various tangential directions to the Lipschitz boundary. The components of these vectors are not better than bounded measurable functions. If the Poisson ratio takes the value 1, the problem is not well-posed. Consequently the second- and third-order directional derivatives in (2) are always present. The second-order derivatives, formed with the Hessian matrix for $$u$$, do not include differentiations of the component functions. The third directional differentiation does, in the sense of distributions.
The quantities in the boundary operators depend only on the local Lipschitz geometry of the domain. Because this geometry is measured in a scale-invariant way, estimates for the Neumann problem (1) and (2) must also be scale invariant if they are to depend only on the geometry. Moreover, the boundary operators are independent of any particular choice of orientation for the rectangular coordinate system. The boundary operators are intrinsic to the geometry of the boundary.
In this article solutions are shown to exist with derivatives up to second order that converge pointwise nontangentially a.e. $$(ds)$$ and in $$L^p(\partial\Omega)$$. The third-order data is shown to converge in the sense of distributions (using parallel approximating boundaries) in the space $$W^{-1,p}(\partial\Omega)$$ dual to $$W^{1,p'}(\partial\Omega)$$. The analysis here is basically $$p=2$$, but a perturbation of all estimates to a small interval about $$p=2$$ is shown to depend only on the Lipschitz geometry of the domain, and solvability there also follows. The optimal range for $$p$$, which from known results will also depend on dimension, must be investigated elsewhere.

MSC:

 35J40 Boundary value problems for higher-order elliptic equations 35Q74 PDEs in connection with mechanics of deformable solids
Full Text:

References:

 [1] Agmon, S., Remarks on self-adjoint and semi-bounded elliptic boundary value problems, inProc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), pp. 1–13. Jerusalem Academic Press, Jerusalem, 1960. [2] Bourlard, M. &Nicaise, S., Abstract Green formula and applications to boundary integral equations.Numer. Funct. Anal. Optim., 18 (1997), 667–689. · Zbl 0898.35031 [3] Calderón, A. P., Boundary value problems for the Laplace equation in Lipschitzian domains, inRecent Progress in Fourier Analysis (El Escorial, 1983), pp. 33–48. North-Holland Math. Stud., 111. North-Holland, Amsterdam, 1985. [4] Ciarlet, P. G.,Mathematical Elasticity, Vol. I. Studies Math. Appl., 20. North-Holland, Amsterdam, 1988. [5] Coifman, R. R., McIntosh, A. &Meyer, Y., L’intégrale de Cauchy définit un opérateur borné surL 2 pour les courbes lipschitziennes.Ann. of Math., 116 (1982), 361–387. · Zbl 0497.42012 [6] Dahlberg, B. E. J., On the Poisson integral for Lipschitz andC 1-domains.Studia Math., 66 (1979), 13–24. · Zbl 0422.31008 [7] Dahlberg, B. E. J. &Kenig, C. E., Hardy spaces and the Neumann problem inL p for Laplace’s equation in Lipschitz domains.Ann. of Math., 125 (1987), 437–465. · Zbl 0658.35027 [8] Dahlberg, B. E. J., Kenig, C. E. &Pipher, J. &Verchota, G. C., Area integral estimates for higher order elliptic equations and systems.Ann. Inst. Fourier (Grenoble), 47 (1997), 1425–1461. · Zbl 0892.35053 [9] Dahlberg, B. E. J., Kenig, C. E. &Verchota, G. C., The Dirichlet problem for the biharmonic equation in a Lipschitz domain.Ann. Inst. Fourier (Grenoble), 363 (1986), 109–135. · Zbl 0589.35040 [10] –, Boundary value problems for the systems of elastostatics in Lipschitz domains.Duke Math. J., 57 (1988), 795–818. · Zbl 0699.35073 [11] Dahlberg, B. E. J. &Verchota, G., Galerkin methods for the boundary integral equations of elliptic equations in nonsmooth domains, inHarmonic Analysis and Partial Differential Equations (Boca Raton, FL, 1988), pp. 39–60. Contemp. Math., 107. Amer. Math. Soc., Providence, RI, 1990. [12] Fabes, E. B., Jodeit, M., Jr &Rivière, N. M., Potential techniques for boundary value problems onC 1-domains.Acta Math., 141 (1978), 165–186. · Zbl 0402.31009 [13] Fabes, E. B. &Kenig, C. E. &Verchota, G. C., The Dirichlet problem for the Stokes system on Lipschitz domains.Duke Math. J., 57 (1988), 769–793. · Zbl 0685.35085 [14] Fraeijs de Veubeke, B. M.,A Course in Elasticity. Appl. Math. Sci., 29. Springer, New York-Berlin, 1979. · Zbl 0419.73001 [15] Friedrichs, K., Die Randwert- und Eigenwertprobleme aus der Theorie der elastischen Platten.Math. Ann., 98 (1928), 206–247. · JFM 53.0469.03 [16] Gao, W. J., Layer potentials and boundary value problems for elliptic systems in Lipschitz domains.J. Funct. Anal., 95 (1991), 377–399. · Zbl 0733.35034 [17] Giroire, J. &Nédélec, J.-C., A new system of boundary integral equations for plates with free edges.Math. Methods Appl. Sci., 18 (1995), 755–772. · Zbl 0835.31003 [18] Gould, P. L.,Introduction to Linear Elasticity, 2nd edition. Springer, Berlin, 1994. [19] Hille, E.,Analytic Function Theory, Vol. II. Ginn, Boston-New York-Toronto, 1962. · Zbl 0102.29401 [20] Jaswon, M. A. &Symm, G. T.,Integral Equation Methods in Potential Theory and Elastostatics. Academic Press, London-New York, 1977. · Zbl 0414.45001 [21] Jerison, D. S. &Kenig, C. E., The Neumann problem on Lipschitz domains.Bull. Amer. Math. Soc., 4 (1981), 203–207. · Zbl 0471.35026 [22] – Boundary value problems on Lipschitz domains, inStudies in Partial Differential Equations pp. 1–68. MAA Stud. Math., 23. Math. Assoc. America, Washington, DC, 1982. [23] John, F.,Plane Waves and Spherical Means Applied to Partial Differential Equations. Interscience, New York-London, 1955. · Zbl 0067.32101 [24] Kenig, C. E.,Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS Regional Conf. Ser. in Math., 83, Amer. Math. Soc., Providence, RI, 1994. · Zbl 0812.35001 [25] Meyer, Y. &Coifman, R.,Wavelets. Cambridge Stud. Adv. Math., 48. Cambridge Univ. Press, Cambridge, 1997. [26] Mitrea, M., The method of layer potentials in electromagnetic scattering theory on nonsmooth domains.Duke Math. J., 77 (1995), 111–133. · Zbl 0833.35138 [27] Nadai, A.,Theory of Flow and Fracture, of Solids Vol. II. McGraw-Hill, New York, 1963. [28] Nazaret, C., A system of boundary integral equations for polygonal plates with free edges.Math. Methods Appl. Sci., 21 (1998), 165–185. · Zbl 0894.73048 [29] Neĉas, J., On domains of typeN.Czechoslovak Math. J., 12 (87), (1962), 274–287 (Russian). [30] Pipher J. &Verchota, G., Area integral estimates for the biharmonic operator in Lipschitz domains.Trans. Amer. Math. Soc., 327 (1991), 903–917. · Zbl 0774.35022 [31] –, The Dirichlet problem inL p for the biharmonic equation on Lipschitz domains.Amer. J. Math., 114 (1992), 923–972. · Zbl 0768.31006 [32] –, A maximum principle for biharmonic functions in Lipschitz andC 1 domains.Comment. Math. Helv., 68 (1993), 385–414. · Zbl 0794.31005 [33] –, Diation invariant estimates and the boundary Gårding inequality for higher order elliptic operators.Ann. of Math., 142 (1995), 1–38. · Zbl 0878.35035 [34] Pleijel, Å., On the eigenvalues and eigenfunctions of elastic platesComm. Pure Appl. Math., 3 (1950), 1–10. · Zbl 0040.05403 [35] –, On Green’s functions for elastic plates with clamped, supported and free edges, inSpectral Theory and Differential Problems, pp. 413–437, Oklahoma Agricultural and Mechanical College. Stillwater, OK, 1951. [36] Pólya, G. &Szego, G.,Isoperimetric Inequalities in Mathematical Physics. Ann. of Math. Stud.,27. Princeton Univ. Press, Princeton, NJ, 1951. [37] Shen, Z., TheL p Dirichlet problem for elliptic systems on Lipschitz domains. Preprint, 2004. [38] Stein, E. M.,Singular Integrals and Differentiability Properties of Functions. Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970. · Zbl 0207.13501 [39] Stein, E. M. &Weiss, G., On the theory of harmonic functions of several variables, I: The theory ofH p -spaces.Acta Math., 103 (1960), 25–62. · Zbl 0097.28501 [40] Taylor, A. E. &Lay, D. C.,Introduction to Functional Analysis, 2nd edition, Wiley, New York-Chichester-Brisbane, 1980. · Zbl 0501.46003 [41] Verchota, G., Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains.J. Funct. Anal., 59 (1984), 572–611. · Zbl 0589.31005 [42] –, The Dirichlet problem for the biharmonic equation inC 1 domains.Indiana Univ. Math. J. 36 (1987), 867–895. · Zbl 0644.35039 [43] –, The Dirichlet problem for the polyharmonic equation in Lipschitz domains.Indiana Univ. Math. J., 39 (1990), 671–702. · Zbl 0724.31005 [44] –, The use of Rellich identities on certain nongraph boundaries, inHarmonic Analysis and Boundary Value Problems (Fayetteville, AR, 2000) pp. 127–138. Contemp. Math., 277. Amer. Math. Soc., Providence, RI, 2001. [45] Verchota, G. C. & Vogel, A. L., The multidirectional Neumann problem inR 4. Preprint, 2004. [46] Wermer, J.,Potential Theory. Lecture Notes in Math., 408. Springer, Berlin-New York, 1974. · Zbl 0297.31001 [47] Yosida, K.,Functional Analysis, 4th edition. Grundlehren Math. Wiss., 123, Springer, New York-Heidelberg, 1974. · Zbl 0286.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.