Derivation of a dual-mixed \(hp\)-finite element model for axisymmetrically loaded cylindrical shells. (English) Zbl 1271.74413

Summary: The two-field dual-mixed Fraeijs de Veubeke variational formulation of three-dimensional elasticity serves as the starting point of the derivation of a dimensionally reduced shell model presented in this paper. The fundamental variables of this complementary energy-based variational principle are the not a priori symmetric stress tensor and the skew-symmetric rotation tensor. The tensor of first-order stress functions is applied to satisfy translational equilibrium, while the rotation tensor plays the role of a Lagrange multiplier to ensure rotational equilibrium. The volumetric locking-free shell model uses unmodified three-dimensional constitutive equations, and no classical kinematical hypotheses are employed during the derivation. The numerical performance of the related low-order \(h\)-, and higher-order \(p\)-version finite elements developed for axisymmetrically loaded cylindrical shells is investigated by two representative model problems. It is numerically proven that no negative effect can be experienced when the thickness is small and tends to zero.


74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
Full Text: DOI


[1] Amara M., Thomas J.M.: Equilibrium finite elements for the linear elastic problem. Numer. Math. 33(4), 367–383 (1979) · Zbl 0401.73079
[2] Arnold D.N., Falk R.S.: A new mixed formulation for elasticity. Numer. Math. 53(1–2), 13–30 (1988) · Zbl 0621.73102
[3] Arnold D.N., Brezzi F., Douglas J. Jr.: PEERS: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1(2), 347–367 (1984) · Zbl 0633.73074
[4] Arnold D.N., Falk R.S., Winther R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76, 1699–1723 (2007) · Zbl 1118.74046
[5] Atluri S.N.: Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations, for computational analyses of finitely deformed solids, with application to plates and shells–I: theory. Comput. Struct. 18(1), 93–116 (1984) · Zbl 0524.73043
[6] Bertóti E.: Indeterminacy of first order stress functions and the stress- and rotation-based formulation of linear elasticity. Comput. Mech. 14(3), 249–265 (1994) · Zbl 0809.73018
[7] Bertóti E.: Dual-mixed hp finite element methods using first-order stress functions and rotations. Comput. Mech. 26(1), 39–51 (2000) · Zbl 0980.74057
[8] Bertóti E.: Dual-mixed p and hp finite elements for elastic membrane problems. Int. J. Num. Meth. Eng. 53(1), 3–29 (2002) · Zbl 1112.74502
[9] Bertóti, E.: Stress-based and locking-free hp finite elements for thin elastic plates. In: Mang, H.A., Rammerstorfer, F.G., JE (eds.) Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), pp. 1–10. Vienna University of Technology, Austria (2002b)
[10] Bertóti, E.: Derivation of plate and shell models using the Fraeijs de Veubeke variational principle. In: Ramm, E., Wall, W.A., Bletzinger, K.U., Bischoff, M. (eds.) Proceedings of the Fifth International Conference on Computation of Shell and Spatial Structures, pp. 1–4. Austria (2005)
[11] Bertóti E.: On the stress function approach in three-dimensional elasticity. Acta Mech 190(1–4), 197–204 (2007) · Zbl 1117.74007
[12] Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991) · Zbl 0788.73002
[13] Cazzani A., Atluri S.N.: Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes. Comput. Mech. 11(4), 229–251 (1993) · Zbl 0773.73085
[14] Chapelle D., Bathe K.J.: Fundamental considerations for the finite element analysis of shell structures. Comput. Struct. 66(1), 19–36 (1998) · Zbl 0934.74073
[15] Farhloul M., Fortin M.: Dual hybrid methods for the elasticity and stokes problems: a unifed approach. Numer. Math. 76(4), 419–440 (1997) · Zbl 0880.73064
[16] Fraeijs de Veubeke B.M.: A new variational principle for finite elastic displacements. Int. J. Eng. Sci. 10(9), 745–763 (1972) · Zbl 0245.73031
[17] Fraeijs de Veubeke, B.M.: Stress function approach. In: Proceedings of the World Congress on Finite Element Methods in Structural Mechanics, pp. J.1–J.51. Bournemouth (1975)
[18] Fraeijsde Veubeke B.M., Millard A.: Discretization of stress fields in the finite element method. J Frankl. Inst. 302(5–6), 389–412 (1976) · Zbl 0352.73061
[19] Gatica G.N., Meddahi S., Ma A.: A new dual-mixed finite element method for the plane linear elasticity problem with pure traction boundary conditions. Comput. Methods Appl. Mech. Eng. 197, 1115–1130 (2008) · Zbl 1169.74601
[20] Hughes T.J.R.: The Finite Element Method–Linear Static and Dynamic Finite Element Analysis. Dover Publications, Inc., New York (2000) · Zbl 1191.74002
[21] Iura M., Atluri S.N.: Formulation of a membrane finite element with drilling degrees of freedom. Comput. Mech. 9(6), 417–428 (1992) · Zbl 0761.73109
[22] Klaas O., Schröder J., Stein E., Miehe C.: A regularized dual mixed element for plane elasticity implementation and performance of the BDM element. Comput. Methods Appl. Mech. Eng. 121(1–4), 201–209 (1995) · Zbl 0852.73065
[23] Kocsán L.G.: Analytical solution using first-order stress functions for axisymmetrically loaded cylindrical shells. GÉP 60(6), 21–31 (2009) in Hungarian
[24] Naghdi P.: Foundations of elastic shell theory. In: Sneddon, I., Hill, R. (eds) Progress in Solid Mechanics, vol. 4, chap 1, pp. 3–90. North-Holland Publishing Co., Amsterdam (1963)
[25] Punch E.F., Atluri S.N.: Large displacement analysis of plates by a stress-based finite element approach. Comput. Struct. 24(1), 107–117 (1986) · Zbl 0589.73065
[26] Reissner E.: A note on variational principles in elasticity. Int. J. Solids. Struct. 1(1), 93–95 (1965)
[27] Roberts J., Thomas J.M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.L. (eds) Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol. 2., pp. 523–639. Elsevier Science Publishers B.V., North-Holland (1991) · Zbl 0875.65090
[28] Schröder J., Klaas O., Stein E., Miehe C.: A physically nonlinear dual mixed finite element formulation. Comput. Methods Appl. Mech. Eng. 144(1–2), 77–92 (1997) · Zbl 0892.73071
[29] Stein E., Rolfes R.: Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity. Comput. Methods Appl. Mech. Eng. 84(1), 77–95 (1990) · Zbl 0729.73208
[30] Stenberg R.: On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math. 48(4), 447–462 (1986) · Zbl 0563.65072
[31] Stenberg R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513–538 (1988) · Zbl 0632.73063
[32] Stenberg R., Suri M.: Mixed hp finite element methods for problems in elasticity and stokes flow. Numer. Math. 72(3), 367–389 (1996) · Zbl 0855.73075
[33] Stolarski H., Belytschko T.: Membrane locking and reduced integration for curved elements. J. Appl. Mech. 49(1), 172–176 (1982) · Zbl 0482.73060
[34] Stolarski H., Belytschko T.: Shear and membrane locking in curved c 0 elements. Comput. Methods Appl. Mech. Eng. 41(3), 279–296 (1983) · Zbl 0517.73068
[35] Suetake Y., Iura M., Atluri S.N.: A note on variational principles in elasticity. Comput. Model. Simul. Eng. 4(1), 42–49 (1999)
[36] Szabó B., Babuška I.: Finite Element Analysis. Wiley, New York (1991) · Zbl 0792.73003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.