×

Indeterminacy of first order stress functions and the stress- and rotation-based formulation of linear elasticity. (English) Zbl 0809.73018

Summary: Following from the indeterminacy of the nonsymmetric tensor of first order stress functions, satisfaction of the linear three-dimensional translational equilibrium equations can be achieved by the use of only six non-zero first order stress functions instead of nine. Utilizing this fact, redundant variable approximations in assumed nonsymmetric stress- based procedures can be avoided on the one hand, and, on the other, independent Euler equations and natural boundary conditions of mixed variational principles using nonsymmetric stresses as independent variables can be obtained. In this paper, the independent governing equations of linear elasticity in terms of stresses and rotations are derived using Fraeijs de Veubeke’s complementary energy-based mixed variational principle [B. Fraeijs de Veubeke, Int. J. Engin. Sci. 10, 745-763 (1975; Zbl 0245.73031)].

MSC:

74B10 Linear elasticity with initial stresses
74B05 Classical linear elasticity
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics

Citations:

Zbl 0245.73031
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, D. N. 1990: Mixed finite element methods for elliptic problems. Comput. Meth. Appl. Mech. Engng. 82: 281-300 · Zbl 0729.73198 · doi:10.1016/0045-7825(90)90168-L
[2] Atluri, S. N. 1983: Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations, for computational analysis of finitely deformed solids, with application to plates and shells?I. Theory. Comput. Struct. 18: 93-116 · Zbl 0524.73043 · doi:10.1016/0045-7949(84)90085-3
[3] Bertóti, E. 1993: Complementary energy method for cylindrical shells using second order stress functions. Comput. Meth. Appl. Mech. Engng. 108: 147-163 · Zbl 0783.73037 · doi:10.1016/0045-7825(93)90158-T
[4] Béda, G.; Kozák, I.; Verhás, J. 1986: Continuum Mechanics. Müszaki Könyvkiadó: Budapest (in Hungarian)
[5] Blokh, V. 1950: Stress functions in the theory of elasticity. Prikl. Mat. Mekh. 14: 415-422 (in Russian)
[6] Dost, S.; Glockner, P. G. 1983: On non-linear Beltrami-Mitchell equations. Int. J. Nonlin. Mech. 18: 247-257 · Zbl 0517.73014 · doi:10.1016/0020-7462(83)90012-4
[7] Fraeijs de Veubeke, B. M. 1972: A new variational principle for finite elastic displacements. Int. J. Engng. Sci. 10: 745-763 · Zbl 0245.73031 · doi:10.1016/0020-7225(72)90079-1
[8] Fraeijs de VeubekeB. M. 1973: Diffusive equilibirum models. Lectures notes for the International Research Seminar on ?The theory and application of finite element methods?. University of Calgary, Alberta, Canada
[9] Fraeijs de Veubeke, B. M. 1975: Stress function approach. Proc. World Cong. on Finite Element Methods in Structural Mecahanics. Bournemouth, U.K., J.1?J.51
[10] Fraeijs de Veubeke, B. M.; Millard, A. 1976: Discretization of stress fields in the finite element method. J. Franklin Inst. 302: 389-412 · Zbl 0352.73061 · doi:10.1016/0016-0032(76)90032-6
[11] Gallagher, R. H.; Heinrich, J. C.; Sarigul, N. 1983: Complementary energy revisited. In: Atluri, S. N. et al. (eds.): Hybrid and mixed finite elelment methods, pp. 453-465. Wiley: New York
[12] Gurtin, M. E. 1965: The linear theory of elasticity. In: Flügge, S. (ed.): Handbuch der Physik, vol. VIa/2, pp. 53-59. Springer-Verlag: Berlin
[13] Kozák, I. 1980: Notes on the field equations with stresses and on the boundary conditions in the linearized theory of elastostatics. Acta Technica Acad. Scient. Hung. 90(3-4): 221-245
[14] Kozák, I. 1981: Remarks and contributions to the variational principles of the linearized theory of elasticity in terms of stress functions. Acta Technica Acad. Scient. Hung. 92(1-2): 45-65
[15] Murakawa, H.; Atluri, S. N. 1978: Finite elasticity solutions using hybrid finite elements based on a complementary energy principle. J. App. Mech. 45: 539-547 · Zbl 0392.73038 · doi:10.1115/1.3424358
[16] Murakawa, H.; Atluri, S. N. 1979: Finite elasticity solutions using hybrid finite elements based on a complementary energy principle?II. Incompressible materials. J. App. Mech. 46: 71-78 · Zbl 0404.73075 · doi:10.1115/1.3424531
[17] Murakawa, H.; Atluri, S. N. 1981: Finite deformations, finite rotations, and stability of plates: a complementary energy?finite element analysis. 22nd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Material Conf. Atlanta, GA · Zbl 0465.73105
[18] Ogden, R. W. 1975: A note on variational theorems in non-linear elastostatics. Math. Proc. Camb. Phil. Soc. 77: 609-615 · Zbl 0312.73052 · doi:10.1017/S0305004100051422
[19] Punch, E. F.; Atlrui, S. N. 1986: Large displacement analysis of plates and shells by a stress-based finite element approach. Comput. Struct. 24: 107-117 · Zbl 0589.73065 · doi:10.1016/0045-7949(86)90339-1
[20] Simmonds, J. G.; Danielson, D. A. 1972: Nonlinear shell theory with finite rotation and stress-function vectors. J. Appl. Mech. 39: 1085-1090 · Zbl 0248.73043 · doi:10.1115/1.3422833
[21] Truesdell, C. 1960: Invariant and complete stress functions for general continua. Arch. Rat. Mech. Anal. 4: 1-29 · Zbl 0089.40803 · doi:10.1007/BF00281376
[22] Wood, R. D. 1988: Finite element analysis of plane couple-stress problem using first order stress functions. Int. J. Numer. Meth. Engng. 26: 489-509 · Zbl 0629.73054 · doi:10.1002/nme.1620260214
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.