Parameters identification and optimal control in pharmacokinetics. (English) Zbl 0559.93022

The authors examine a method of determining kinetic parameters in linear compartment models of the form \(X'=AX\) where the characteristic values of A are distinct (a condition not recognized in the paper). Utilizing numerically determined estimates of the characteristic values of A [presented in Y. Cherruault, Biomathématiques, P.U.F., Collection Que Sais-Je (1983)], and supplementing the system with algebraic equations involving initial values of the \(X_ i\) and their derivatives, they are able to circumvent potential problems involved with observability. In cases where non-uniqueness of the computed parameters results, the authors suggest adjoining a minimization criteria involving a measure of the ”fitness” of the model.
Reviewer: S.Merrill


93B30 System identification
92Cxx Physiological, cellular and medical topics
93C05 Linear systems in control theory
93B40 Computational methods in systems theory (MSC2010)
Full Text: DOI


[1] Allman D. J.: ’On compatible and equlibrium models with linear stresses for stretching of elastic plates’, in Energy Methods in Finite Element Analysis, John Wiley, Chichester, New York, 1979. · Zbl 0407.73059
[2] Aubin J. P.: Approximations of Elliptic Boundary-Value Problems, John Wiley, New York, 1972. · Zbl 0248.65063
[3] Aubin J. P. and Burchard H.: Some aspects of the hypercircle method applied to elliptic variational problems’, SYNSPADE, Academic Press, New York, 1971, pp. 1–67. · Zbl 0264.65069
[4] Brezzi F., Hager W. W. and Raviart P. A.: ’Error estimates for the finite element solution of variational inequalities’, Numer. Math. 28 (1977), 431–443 and 31 (1978), 1–16. · Zbl 0369.65030
[5] Céa J.: Optimisation, théorie et algorithmes, Dunod, Paris, 1971.
[6] Ciarlet P. G.: The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[7] Courant R. and Hilbert D.: Methoden der Mathematischen Physik, I, Springer. Berlin, 1937.
[8] Duvaut G. and Lions J. L.: Les inéquations en mécanique et en physique, Dunod, Paris, 1972 (English translation, Springer-Verlag, Berlin 1976). · Zbl 0298.73001
[9] Ekeland I. and Temam R.: Analyse convexe et problèmes variationnels, Dunod, Paris, 1974. · Zbl 0281.49001
[10] Falk R. S.: ’Error estimates for the approximation of a class of variational inequalities’, Math. Comp. 28 (1974), 963–971. · Zbl 0297.65061
[11] Fichera G.: ’Boundary value problems of elasticity with unilateral constraints’, in S.Flügge (ed.) Encyclopaedia of Physics, Vol. VIa/2, Springer-Verlag, Berlin, 1972. · Zbl 0264.49007
[12] Fraeijs de Veubeke B.: ’Displacement and equilibrium models in the finite element method. Stress Analysis’, in O. C.Zienkiewicz and G. S.Holister (eds.) Stress Analysis, J. Wiley, Chichester, 1965, pp. 145–197.
[13] Fraeijs de Veubeke B. and Hogge M.: ’Dual analysis for heat conduction problems by finite elements’, Int. J. Numer. Meth. Engng, 5 (1972), 65–82. · Zbl 0251.65061
[14] Gajewski H.: ’On conjugate evolution equations and a posteriori error estimates’, Abhandl. Akad. Wiss. DDR N 1 (1977), 69–88. · Zbl 0367.35051
[15] Girault V. and Raviart P. A.: Finite Element Approximations of the Navier-Stokes Equations, Springer-Verlag, Berlin, 1979. · Zbl 0396.65070
[16] Glowinski R., Lions J. L. and Trémolières R.: Analyse numérique des inéquations variationneles Dunod, Paris, 1976.
[17] Grisvard, P. and Ioos, G.: ’Problèmes aux limites unilateraux dans les domainesnon regulieres’, Publ. Semin. Math. (1976), Université de Rennes.
[18] Haslinger J. and Hlavaček I.: ’Convergence of a finite element method based on the dual variational formulation’, Apl. Mat. 21 (1976), 43–65. · Zbl 0326.35020
[19] Haslinger J. and Hlaváček I.: ’Convergence of a dual finite element method in Rn’, Comment. Math. Univ. Carolinae, 16 (1975), 469–485. · Zbl 0321.65060
[20] Haslinger J. and Hlaváček I.: ’Contact between elastic bodies. I. Continuous problems, II. Finite element analysis. III. Dual finite element analysis’, Apl. Mat. 25 (1980), 324–347: 26 (1981), 263–290, 321–344. · Zbl 0449.73117
[21] Haslinger J. and Hlaváček I.: ’Contact between elastic-perfectly plastic bodies’, Apl. Mat. 27 (1982), 27–45. · Zbl 0495.73094
[22] Hlaváček I.: ’The density of solenoidal functions and the convergence of a dual finite element method’, Apl. Mat. 25 (1980), 39–55. · Zbl 0424.65056
[23] Hlaváček I.: ’On a conjugate semi-variational finite element method for parabolic equations’, Apl. Mat. 18 (1973), 434–444. · Zbl 0278.35048
[24] Hlaváček I.: ’On a conjugate finite element method for parabolic equations’, Acta Univ. Carolinae, 15 (1974), 43–46.
[25] Hlaváček I.: ’Convergence of an equilibrium finite element model for plane elastostatics’, Apl. Mat. 24 (1979), 427–457. · Zbl 0441.73101
[26] Hlaváček I.: ’Dual finite element analysis for unilateral boundary value problems’, Apl. Mat. 22 (1977), 14–51. · Zbl 0416.65070
[27] Hlaváček I.: ’Dual finite element analysis for elliptic problems with obstacles on the boundary’, Apl. Mat. 22 (1977), 244–255. · Zbl 0422.65065
[28] Hlaváček I.: ’Dual finite element analysis for semi-coercive unilateral boundary value problems’, Apl. Mat. 23 (1978), 52–71. · Zbl 0407.65048
[29] Hlaváček I.: ’Convergence of dual finite element approximations for unilateral boundary value problems’, Apl. Mat. 25 (1980), 375–386. · Zbl 0462.65064
[30] Hlaváček I.: ’A finite element solution for plasticity with strain-hardening’, R.A.I.R.O. Anal. numér. 14 (1980), 347–368.
[31] Hlaváček I. and Lovišek J.: ’A finite element analysis for the Signorini problem in plane elastostatics’, Apl. Mat. 22 (1977), 215–228. · Zbl 0369.65031
[32] Hlaváček I. and Lovišek J.: ’Finite element analysis of the Signorini problem in semi-coercive cases’, Apl. Mat. 25 (1980), 273–285. · Zbl 0448.73073
[33] Hlaváček I. and Nečas J.: ’On inequalities of Korn’s type’, Arch. Ratl. Mech. Anal. 36 (1970), 305–334. · Zbl 0193.39001
[34] Johnson C. and Mercier B.: ’Some equilibrium finite element methods for two-dimensional elasticity problems’, Numer. Math. 30 (1978), 103–116. · Zbl 0427.73072
[35] Kelly D. W.: ’Bounds on discretization error by special reduced integration of the Lagrange family of finite elements’, Int. J. Numer. Meth. Engng, 15 (1980), 1489–1506. · Zbl 0438.73057
[36] Křižek M.: ’An equilibrium finite element method in three-dimensional elasticity’, Apl. Mat. 27 (1982), 46–75.
[37] Křižek, M.: ’Conforming equilibrium finite element methods for some elliptic plane problems’, R.A.I.R.O. Anal. Numer. 17 (1983). · Zbl 0541.76003
[38] Mosco U. and Strang G.: ’One-sided approximations and variational inequalities’, Bull. Amer. Math. Soc. 80 (1974) 308–312. · Zbl 0278.35026
[39] Nečas J.: Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
[40] Nečas J.: ’On regularity of solutions to nonlinear variational inequalities for 2nd order elliptic systems’, Rend. di Matem. 2 (1975), v. 8, VI, 481–498.
[41] Nečas J. and Hlaváček I.: Mathematical Theory of Elastic and Elasto-Plastic Bodies, Elsevier, Amsterdam, 1981.
[42] Ponter A. R. S.: ’The application of dual minimum theorems to the finite element solution of potential problems with special reference to seepage’, Intern. J. Numer. Meth. Engng, 4 (1972), 85–93. · Zbl 0254.76095
[43] Pšeničnyi B. N. and Danilin Yu. M.: Numerical Methods in Extremal Problems (in Russian), Nauka, Moskva, 1975.
[44] Raviart, P. A. and Thomas, J. M.: ’A mixed finite element method for 2nd order elliptic problems’, Proc. Conference on FEM held in Rome in 1975, Lecture Notes in Math. 606, Springer-Verlag, 1977. · Zbl 0362.65089
[45] Sanders, G.: ’Applications of the dual analysis principle’, Proc. IUTAM Symp. on High Speed Computing of Elastic Structures, Liège, 1971, pp. 167–207.
[46] Thomas, J. M.: Sur l’analyse numérique des methodes d’élements finis hybrides et mixtes, Thesis, Université P. et M. Curie, Paris, 1977.
[47] Thomas J. M.: ’Méthode des élements finis hybrides duaux pour les problèmes elliptiques du second ordre’, Rev. Franc. Autom. Inform. Rech. Opér. Sér. Rouge, Anal. Numér. 10, 51–79 (1976).
[48] Vacek J.: ’Dual variational principles for an elliptic partial differential equation’, Apl. Mat. 21 (1976), 5–27. · Zbl 0345.35035
[49] Washizu K.: Variational Methods in Elasticity and Plasticity, 2nd ed., Pergamon Press, Oxford, 1975. · Zbl 0339.73035
[50] Watwood V. B.Jr. and Hartz B. J.: ’An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems’, Inter. J. Solids Struct. 4 (1968), 857–873. · Zbl 0164.26201
[51] Zlámal M.: ’Curved elements in the finite element method’, SIAM J. Numer. Anal. 10 (1973), 229–240. · Zbl 0285.65067
[52] Zoutendijk G.: ’Nonlinear programming’, SIAM J. Control, 4 (1966), 194–210. · Zbl 0146.13303
[53] Pian T. H. H. and Tong P.: ’A variational principle and the convergence of a finite element method based on assumed stress distribution’, Inter. J. Solids Struct. 5 (1969), 463–472. · Zbl 0167.52805
[54] Babuska I., Oden J. T. and Lee J. K.: ’Mixed-hybrid finite element approximations of second-order elliptic boundary-value problems’, Comp. Met. Appl. Mech. Engng, 11 (1977), 175–206. · Zbl 0382.65056
[55] Glowinski R., Rodin E. Y. and Zienkiewicz O. C. (eds.), Energy Methods in Finite Element Analysis, J. Wiley, Chichester, 1979. · Zbl 0401.00018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.