×

Direct limit analysis via rigid-plastic finite elements. (English) Zbl 0333.73032


MSC:

74R20 Anelastic fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kachanov, L.M., Foundations of the theory of plasticity, (1971), North-Holland Amsterdam · Zbl 0231.73015
[2] Olszak, W.; Perzyna, P.; Sawczuk, A., Teoria plasticitatii [romanian], (1970), ed. Teh., Bucharest
[3] Ilyushin, A.A., Plasticité, déformations élasto-plastiques, (1959), Eyrolles Paris
[4] Hodge, P.G., Plastic analysis of structures, (1959), McGraw-Hill New York · Zbl 0113.17903
[5] Save, M.; Massonnet, C., Calcul plastique des constructions, structures dépendant de plusieurs paramètres, ()
[6] Johansen, K.W., Brudlinienteorier, (1943), Gjellerups Copenhagen
[7] Gvozdev, A.A., Determination of collapse load for statically indeterminate structures subjected to plastic deformation (Russian), ()
[8] Olszak, W., Sur la théorie de la charge limite des plaques orthotropes, Bull. acad. Pol. sci., 2, 1, 3-8, (1954), ch. 4
[9] Sawczuk, A., Some problems of load carrying capacities of orthotropic nonhomogeneous plates, Arch. mech. struct., 8, 549-563, (1958) · Zbl 0074.40204
[10] Prager, W.; Hodge, P.G., Theory of perfectly plastic solids, (1951), Wiley · Zbl 0044.39803
[11] Johnson, W.; Mellor, P.B., Plasticity for mechanical engineers, (1962), Van Nostrand
[12] Alexander, J.M.; Brewer, R.C., Manufacturing properties of materials, (1963), Van Nostrand
[13] Shull, H.E.; Hu, L.W., Load carrying capacities of simply supported rectangular plates, J. appl. mech. ASME, 30, 617-621, (1963)
[14] Schumann, W., On limit analysis of plates, Quart. appl. math., 16, 61-71, (1958) · Zbl 0097.40302
[15] Hopkins, H.G., Some remarks concerning the dependence of the solution of plastic plate problems upon the yield criterion, (), 448-457
[16] Unkov, E.P., An engineering theory of plasticity, (1961), Butterworth London
[17] Shield, R.T.; Drucker, D.C., The application of limit analysis to punch-indentation problems, J. appl. mech. ASME, 20, 453-460, (1953) · Zbl 0052.20902
[18] Ford, H.; Lianis, G.Z.; Angew, Z., Math. phys., 8, 360-382, (1957)
[19] Alexander, J.M., On complete solutions for frictionless extrusion in plane strain, Quart, appl. math., 19, 31-37, (1961)
[20] Argyris, J.H., Elasto-plastic matrix displacement analysis of three-dimensional continua, J. roy. aero. soc., 69, 633-635, (1965)
[21] Pope, G.G., A discrete element method for analysis of plate elasto-plastic strain problems, (1965), R.A.P. Farnborough T.R., 65028
[22] Marcal, P.V.; King, I.P., Elastic-plastic analysis of two dimensional stress systems by the finite element method, Int. J. mech. sci., 9, 143-155, (1967)
[23] Yamada, Y.; Yoshimura, N.; Sakurai, T., Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method, Int. J. mech. sci., 9, 343-351, (1967) · Zbl 0159.56701
[24] Zienkiewicz, O.C.; Valliappan, S.; King, I.P., Elasto-plastic solutions of engineering problems - “initial stress”, finite element approach, Int. J. numer. meth. eng., 1, 75-100, (1969) · Zbl 0247.73087
[25] Hodge, P.G.; Belytschko, T., Numerical methods for the limit analysis of plates, J. appl. mech. ASME, 35, 797-802, (1968) · Zbl 0172.52003
[26] Ranaweera; Leckie, F.A., Bound methods in limit analysis, () · Zbl 0411.73075
[27] Casciaro, R.; Di Carlo, A., Formulazione dell’ analisi limite delle piastre come problema di minimax mediante una rappresentazione agli elementi finiti del campo delle tensioni, G. genio civ., 109, 87-108, (1971)
[28] Faccioli, E.; Vitiello, E., A finite element linear programming method for the limit analysis of thin plates, Int. J. numer. meths. eng., 5, 311-325, (1973) · Zbl 0248.73031
[29] Sayegh, A.F.; Rubinstein, M.F., Elastic-plastic analysis by quadratic programming, J. eng. mech. div. ASCE, 98, 1547-1572, (1972)
[30] Maier, G., A quadratic programming approach for certain classes of non linear structural problems, Meccanica, 3, 121-130, (1968) · Zbl 0165.28502
[31] Maier, G., Quadratic programming and theory of perfectly plastic structures, Meccanica, 3, 1-9, (1968)
[32] De Donato, O.; Franchi, A., A modified gradient method for finite element elasto-plastic analysis by quadratic programming, Comp. meths. appl. mech. eng., 2, 107-131, (1973) · Zbl 0258.73041
[33] Pian, T.H.H., Formulations of finite element methods for solid continua, () · Zbl 0303.49027
[34] Washizu, K., Variational methods in elasticity and plasticity, (1968), Pergamon Press Oxford · Zbl 0164.26001
[35] Hill, R., Mathematical theory of plasticity, (1950), Oxford Univ. Press London · Zbl 0041.10802
[36] Faccioli, E., A variational theorem for Mises solids based on stress potentials, Meccanica, 4, 1-7, (1969) · Zbl 0228.73009
[37] Markov, A.A., On variational principles on theory of plasticity, Prik. mat. mekh., 11, 339-350, (1947) · Zbl 0029.17204
[38] Sadowsky, M.A., A principle of maximum plastic resistance, J. appl. mech. ASME, 10, 65-68, (1973)
[39] Prager, W., Variational principles for elastic plates with relaxed continuity requirements, Int. J. solids struct., 4, 837-844, (1968) · Zbl 0164.26303
[40] De Veubeke, B.Fraeijs, Displacement and equilibrium models in the finite element method, (), ch. 9 · Zbl 0245.73031
[41] Pian, T.H.H.; Tong, P., Basis of finite element methods for solid continua, Int. J. numer. meths. eng., 1, 3-28, (1969) · Zbl 0252.73052
[42] Nguyen Dang Hung; Detroux, P., La formulation théorique et le comportement numérique d’un élément de plaque fléchie à deux champs, Coll. pub. de la fac. sci. appl. univ. liège, 54, 37-93, (1975)
[43] Neale, K.W., A general variational theorem for the rate problem in elasto-plasticity, Int. J. solids struct., 8, 865-876, (1972) · Zbl 0246.73002
[44] Belytschko, T.; Velebit, M., Finite element method for elastic plastic plates, J. eng. mech. div. ASCE, 98, 227-242, (1972)
[45] Mura, T.; Lee, S.L., Application of variational principles to limit analysis, Quatr. appl. math., 21, 243-248, (1963) · Zbl 0137.20203
[46] Mura, T.; Lee, S.L., Limit analysis by direct method variation, J. eng. mech. div. ASCE, 93, 67-77, (1967)
[47] Jones, R.E., A generalization of the direct-stiffness method of structural analysis, Aiaa j., 2, 821-826, (1964) · Zbl 0119.19304
[48] Yamamoto, Y., A formulation of matrix displacement method, MIT, dept. aero. astro., (Nov. 1966)
[49] Jacoby, S.L.S.; Kowalik, J.S.; Pizzo, J.T., Iterative methods for nonlinear optimization problems, (1972), Prentice-Hall · Zbl 0315.65036
[50] Valentine, F.A., The problem of Lagrange with differential inequalities as added side conditions, () · JFM 63.0481.02
[51] Miele, A., The calculus of variations in applied aerodynamics and flight mechanics, () · Zbl 0102.41804
[52] Reissner, E., On a variational theorem in elasticity, J. math. and phys., 29, 90-95, (1950) · Zbl 0039.40502
[53] Pian, T.H.H., Derivation of element stiffness matrices, Aiaa j., 2, 576-577, (1964)
[54] Pian, T.H.H., Finite element methods by variational principles with relaxed continuity requirements, (), 3/1-3/24 · Zbl 0303.49027
[55] Herrmann, L.R., A bending analysis for plates, (), 577-601
[56] Herrmann, L.R., Finite element bending analysis for plates, J. eng. mech. div. ASCE, 93, 13-26, (1967)
[57] Wolf, J.P., Generalized stress - models for finite element analysis, (), no. 52
[58] Anderheggen, E.; Knopfel, H., Finite element limit analysis using linear programming, Int. J. solids struct., 8, 1413-1431, (1972) · Zbl 0255.73045
[59] Yamada, Y.; Nakagiri, S.; Takatsuka, K., Elastic plastic analysis of Saint-Venant torsion problem by a hybrid stress model, Int. J. numer. meths. eng., 5, 193-207, (1972) · Zbl 0243.73045
[60] Strang, G.; Fix, G.J., An analysis of the finite element method, (1973), Prentice-Hall · Zbl 0278.65116
[61] Mikhlin, S.G.; Smolitsky, K.L., Approximate methods for solution of differential and integral equations, (1965), Elsevier New York
[62] Hencky, H., Zur theorie plastischer deformationen und der hierdurch in material herforgerufenen nachspannung, Z. angew. math. mech., 4, 323-334, (1924) · JFM 50.0546.03
[63] Massonnet, C.; Save, M., Calcul plastique des constructions, v. 1: structures dépendant d’un paramètr, ()
[64] Fiacco, A.V.; McCormick, G., Nonlinear programming sequential unconstrained minimization techniques, (1968), Wiley New York · Zbl 0193.18805
[65] Ergatoudis, J.G., Isoparametric elements in two and three dimensional analysis, ()
[66] Argyris, J.H.; Fried, I.; Argatoudis, J.G.; Irons, B.M.; Zienkiewicz, O.C., Curved, isoparametric, quadrilateral element for finite element analysis, Aero. J. roy. aero. soc., Int. J. solids struct., 4, 31-42, (1968) · Zbl 0152.42802
[67] Frey, F., Calcul elasto-plastique des structures par la méthode des éléments finis et son application à l’état plan de contrainte, ()
[68] Coulomb, C.A., Essai sur une application des règles maximis et minimis à quelques problèmes de statique relatifs à l’architecture, Mémoires de la math, et de phys., Vol. 7, 343-384, (1973), presented to ‘Acad. Roy. des Sci.’ by some scientists, Paris
[69] Heyman, J., The stability of a vertical cut, Int. J. mech. sci., 15, 845-854, (1973)
[70] Taylor, D.W., Fundamentals of soil mechanics, (1948), Wiley New York
[71] Chen, W.F.; Giger, M.W.; Fang, H.Y., Jap. soc. soil mech. foundation eng., 9, 31-38, (1969)
[72] Drucker, D.C.; Prager, W., Soil mechanics and plastic analysis or limit design, Quart. appl. math., 10, 157-165, (1952) · Zbl 0047.43202
[73] Nayak, G.C.; Zienkiewicz, O.C., Elasto-plastic stress analysis. A generalization for various constitutive relations including strain softening, Int. J. numer. meths eng., 5, 113-135, (1972) · Zbl 0241.73034
[74] Rimawi, W.H.; Dogan, E., Experiments on yielding of tensions specimens with notches and holes, Exper. mech., 10, 427-432, (1970)
[75] Nguyen Dang Hung, Displacement and equilibrium methods in matrix analysis of trapezoidal structures, Coll. pubs. fac. sci. appl. univ. liège, 21, (1970)
[76] Nguyen Dang Hung, Analyse limite des structures métalliques planes, Rev. soc. roy. belge des ing. et des ind., 1-2, (Jan.-Feb. 1974)
[77] Nguyen Dang Hung, Analyse limite rigide-plastique par une méthode quasi-directe, ()
[78] De Veubeke, B.Fraeijs, Upper and lower bounds in structural analysis, (), 72 · Zbl 0131.22903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.