×

A posteriori error estimation and adaptive strategy for the control of MsFEM computations. (English) Zbl 1440.65191

Summary: We introduce quantitative and robust tools to control the numerical accuracy in simulations performed using the Multiscale Finite Element Method (MsFEM). First, we propose a guaranteed and fully computable a posteriori error estimate for the global error measured in the energy norm. It is based on dual analysis and the Constitutive Relation Error (CRE) concept, with recovery of equilibrated fluxes from the approximate MsFEM solution. Second, the estimate is split into several indicators, associated to the various MsFEM error sources, in order to drive an adaptive procedure. The overall strategy thus enables to automatically identify an appropriate trade-off between accuracy and computational cost in the MsFEM numerical simulations. Furthermore, the strategy is compatible with the offline/online paradigm of MsFEM. The performances of our approach are demonstrated in several numerical experiments.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Babuska, I.; Caloz, G.; Osborn, J. E., Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31, 4, 945-981 (1994) · Zbl 0807.65114
[2] Babuska, I.; Osborn, J. E., Generalized finite element methods: their performance and their relation to mixed methods, SIAM J. Numer. Anal., 20, 510-536 (1983) · Zbl 0528.65046
[3] Strouboulis, T.; Copps, K.; Babuska, I., The generalized finite element method, Comput. Methods Appl. Mech. Engrg., 190, 4081-4193 (2001) · Zbl 0997.74069
[4] Fish, J.; Yuan, Z., Multiscale enrichment based on partition of unity, Internat. J. Numer. Methods Engrg., 70, 1341-1359 (2004) · Zbl 1078.74637
[5] Hou, T.; Wu, X. H., A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 169-189 (1997) · Zbl 0880.73065
[6] Hou, T.; Wu, X. H.; Cai, Z., Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68, 227, 913-943 (1999) · Zbl 0922.65071
[7] Efendiev, Y.; Hou, T., Multiscale Finite Element Methods: Theory and Applications (2009), Springer: Springer New York · Zbl 1163.65080
[8] Hughes, T. J.R.; Feijoo, G. R.; Mazzei, L.; Quincy, J. B., The variational multiscale method-A paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 1-2, 3-24 (1998) · Zbl 1017.65525
[9] Hoang, V. H.; Schwab, C., High-dimensional finite elements for elliptic problems with multiple scales, SIAM Multiscale Model. Simul., 3, 168-194 (2005) · Zbl 1074.65135
[10] Hackbusch, W., (Multi-Grid Methods and Applications. Multi-Grid Methods and Applications, Springer Series in Computational Mathematics (1985)) · Zbl 0595.65106
[11] E, W.; Engquist, B.; Huang, Z., Heterogeneous multiscale method: a general methodology for multiscale modeling, Phys. Rev. B, 67, 9, 092101 (2003)
[12] Abdulle, A.; E, W.; Engquist, B.; Vanden-Eijnden, E., The heterogeneous multiscale method, Acta Numer., 21, 1-87 (2012) · Zbl 1255.65224
[13] Feyel, F., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua, Comput. Methods Appl. Mech. Engrg., 192, 3233-3244 (2003) · Zbl 1054.74727
[14] Suquet, P., Elements of homogenization theory for inelastic solid mechanics, (Sanchez-Palencia, E.; Zaoui, A., Homogenization Techniques for Composite Media. Homogenization Techniques for Composite Media, Lecture Notes in Physics, vol. 272 (1987), Springer), 194-278
[15] Le Bris, C.; Legoll, F.; Lozinski, A., An MsFEM type approach for perforated domains, SIAM Multiscale Model. Simul., 12, 3, 1046-1077 (2014) · Zbl 1316.35021
[16] Verfürth, R., A Review of a Posteriori Error Estimates and Adaptive Mesh-Refinement Techniques (1996), Wiley-Teubner · Zbl 0853.65108
[17] Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis (2000), John Wiley & Sons · Zbl 1008.65076
[18] Ladevèze, P.; Pelle, J.-P., Mastering Calculations in Linear and Nonlinear Mechanics (2004), Springer
[19] (Chamoin, L.; Díez, P., Verifying Calculations, Forty Years On: an Overview of Classical Verification Techniques for FEM Simulations (2015), SpringerBriefs) · Zbl 1320.65003
[20] Fraeijs de Veubeke, B.; Hugge, M. A., Dual analysis for heat conduction problems by finite elements, Internat. J. Numer. Methods Engrg., 5, 1, 65-82 (1972) · Zbl 0251.65061
[21] Oden, J. T.; Reddy, J. N., On dual complementary variational principles in mathematical physics, Internat. J. Engrg. Sci., 12, 1-29 (1974) · Zbl 0273.49066
[22] Fraeijs de Veubeke, B., Displacement and equilibrium models in the finite element method, Int. J. Numer. Methods Eng. Class. Reprint Ser., 52, 287-342 (2001) · Zbl 1065.74625
[23] Pled, F.; Chamoin, L.; Ladevèze, P., On the techniques for constructing admissible stress fields in model verification: performances on engineering examples, Internat. J. Numer. Methods Engrg., 88, 5, 409-441 (2011) · Zbl 1242.74149
[24] Ladevèze, P.; Chamoin, L., Calculation of strict error bounds for finite element approximations of nonlinear pointwise quantities of interest, Internat. J. Numer. Methods Engrg., 84, 1638-1664 (2010) · Zbl 1202.74175
[25] Efendiev, Y.; Hou, T.; Wu, X. H., Convergence of a nonconforming multiscale finite element method, SIAM J. Numer. Anal., 37, 3, 888-910 (2000) · Zbl 0951.65105
[26] Hou, T.; Wu, X. H.; Zhang, Y., Removing the cell resonance error in the multiscale finite element method via a Petrov-Galerkin formulation, Commun. Math. Sci., 2, 185-205 (2004) · Zbl 1085.65109
[27] Allaire, G.; Brizzi, R., A multiscale finite element method for numerical homogenization, SIAM Multiscale Model. Simul., 4, 3, 790-812 (2006) · Zbl 1093.35007
[28] Hesthaven, J.; Zhang, S.; Zhu, X., High-order multiscale finite element method for elliptic problems, SIAM Multiscale Model. Simul., 12, 2, 650-666 (2014) · Zbl 1315.65098
[29] Strouboulis, T.; Zhang, L.; Wang, D.; Babuska, I., A posteriori error estimation for generalized finite element methods, Comput. Methods Appl. Mech. Engrg., 195, 852-879 (2006) · Zbl 1119.65111
[30] Strouboulis, T.; Zhang, L.; Babuska, I., Assessment of the cost and accuracy of the generalized FEM, Internat. J. Numer. Methods Engrg., 69, 250-283 (2007) · Zbl 1194.74474
[31] Larson, M. G.; Malqvist, A., Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems, Comput. Methods Appl. Mech. Engrg., 196, 21-24, 2313-2324 (2007) · Zbl 1173.74431
[32] Nolen, J.; Papanicolaou, G.; Pironneau, O., A framework for adaptive multiscale methods for elliptic problems, SIAM Multiscale Model. Simul., 7, 1, 171-196 (2008) · Zbl 1160.65342
[33] Abdulle, A.; Nonnenmacher, A., A posteriori error analysis of the heterogeneous multiscale method for homogenization problems, C. R. Acad. Sci. Paris Sér. I, 347, 1081-1086 (2009) · Zbl 1172.65060
[34] Abdulle, A.; Nonnenmacher, A., Adaptive finite element heterogeneous multiscale method for homogenization problems, Comput. Methods Appl. Mech. Engrg., 200, 2710-2726 (2011) · Zbl 1230.74165
[35] Larsson, F.; Runesson, K., On two-scale adaptive FE analysis of micro-heterogeneous media with seamless scale-bridging, Comput. Methods Appl. Mech. Engrg., 200, 2662-2674 (2011) · Zbl 1230.74186
[36] Paladim, D.; Moitinho de Almeida, J. P.; Bordas, S.; Kerfriden, P., Guaranteed error bounds in homogenization: an optimum stochastic approach to preserve the numerical separation of scales, Internat. J. Numer. Methods Engrg., 110, 2, 103-132 (2017) · Zbl 1365.80011
[37] Henning, P.; Ohlberger, M.; Schweizer, B., An adaptive multiscale finite element method, SIAM Multiscale Model. Simul., 12, 3, 1078-1107 (2014) · Zbl 1312.65191
[38] Chung, E. T.; Efendiev, Y.; Li, G., An adaptive GMsFEM for high contrast flow problems, J. Comput. Phys., 273, 54-76 (2014) · Zbl 1354.65242
[40] Ern, A.; Stephansen, A. F.; Vohralik, M., Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection – diffusion-reaction problems, J. Comput. Appl. Math., 234, 1, 114-130 (2010) · Zbl 1190.65165
[42] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., (Asymptotic Analysis for Periodic Structures. Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, vol. 5 (1978), North-Holland: North-Holland Amsterdam, New York) · Zbl 0404.35001
[43] Sanchez-Palencia, E., Non Homogeneous Media and Vibration Theory (1980), Springer: Springer Heidelberg · Zbl 0432.70002
[44] Jikov, V. V.; Kozlov, S. M.; Oleinik, O. A., Homogenization of Differential Operators and Integral Functionals (1994), Springer-Verlag: Springer-Verlag Berlin Heidelberg
[45] Murat, F.; Tartar, L., Calculus of variations and homogenization, (Topics in the Mathematical Modelling of Composite Materials. Topics in the Mathematical Modelling of Composite Materials, Progress in Nonlinear Differential Equations and their Applications, vol. 31 (1997), Birkhauser), 139-173 · Zbl 0939.35019
[46] Tartar, L., (The General Theory of Homogenization - A Personalized Introduction. The General Theory of Homogenization - A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, vol. 7 (2010), Springer-Verlag: Springer-Verlag Berlin Heidelberg) · Zbl 1188.35004
[47] Kanouté, P.; Boso, D. P.; Chaboche, J.-L.; Schrefler, B. A., Multiscale methods for composites: a review, Arch. Comput. Methods Eng., 16, 1, 31-75 (2009) · Zbl 1170.74304
[48] Le Bris, C.; Legoll, F.; Thomines, F., Multiscale finite element approach for “weakly” random problems and related issues, Math. Modelling Numer. Anal., 48, 3, 815-858 (2014) · Zbl 1300.65007
[49] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North Holland · Zbl 0383.65058
[50] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method (1977), Prentice Hall
[51] Henning, P.; Peterseim, D., Oversampling for the multiscale finite element method, SIAM Multiscale Model. Simul., 11, 4, 1149-1175 (2013) · Zbl 1297.65155
[52] Ladevèze, P.; Leguillon, D., Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal., 20, 3, 485-509 (1983) · Zbl 0582.65078
[53] Destuynder, P.; Métivet, B., Explicit error bounds in a conforming finite element method, Math. Comp., 68, 288, 1379-1396 (1999) · Zbl 0929.65095
[54] Fraejis de Veubeke, B., Displacement and equilibrium models in the finite element method, (Zienkiewicz, O. C.; Holister, G. S., Stress Analysis (1965), Wiley: Wiley New York), 145-197
[55] Ladevèze, P.; Maunder, E. A.W., A general method for recovering equilibrating element tractions, Comput. Methods Appl. Mech. Engrg., 137, 111-151 (1996) · Zbl 0886.73065
[56] Destuynder, P.; Métivet, B., Explicit error bounds for a nonconforming finite element method, SIAM J. Numer. Anal., 35, 5, 2099-2115 (1998) · Zbl 0911.65100
[57] Ern, A.; Nicaise, S.; Vohralik, M., An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems, C. R. Acad. Sci. Paris Sér. I, 345, 12, 709-712 (2007) · Zbl 1129.65085
[58] Ladevèze, P.; Rougeot, P., New advances on a posteriori error on constitutive relation in finite element analysis, Comput. Methods Appl. Mech. Engrg., 150, 239-249 (1997) · Zbl 0906.73064
[59] Babus̆ka, I.; Strouboulis, T.; Upadhyay, C. S.; Gangaraj, S. K.; Copps, K., Validation of a posteriori error estimators by numerical approach, Internat. J. Numer. Methods Engrg., 37, 7, 1073-1123 (1994) · Zbl 0811.65088
[60] Moës, N.; Dolbow, J.; Belytchko, T., A finite element method for crack growth without remeshing, Internat. J. Numer. Methods Engrg., 46, 131-150 (1999) · Zbl 0955.74066
[62] Xu, F. X., A multiscale stochastic finite element method on elliptic problems involving uncertainties, Comput. Methods Appl. Mech. Engrg., 196, 2723-2736 (2007) · Zbl 1173.74449
[63] Efendiev, Y.; Hou, T.; Ginting, V., Multiscale finite element methods for nonlinear problems and their applications, Commun. Math. Sci., 2, 4, 553-589 (2004) · Zbl 1083.65105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.