×

A new class of variational problems arising in the modeling of elastic multi-structures. (English) Zbl 0709.73100

The modeling of junctions between elastic structures is an important practical problem. In this paper elastic multistructures whose substructures have different dimensions (three-dimensional bodies, two- dimensional plates and shells, one-dimensional rods) are analysed as a coupled pluri-dimensional problem. A three-dimensional elastic structure consisting of a three-dimensional portion connected to a thin plate is treated in detailed form. A limit problem is formulated to solve the variational equations of the above mentioned elastic multi-structure. The obtained numerical results are discussed and some computations are also analysed. The main result of the paper is a new variational formulation of multi-structures; by using this formulation the problem is simultaneously posed over a three-dimensional set and a two-dimensional set.
Reviewer: I.Ecsedi

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74E30 Composite and mixture properties
65K10 Numerical optimization and variational techniques
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Aufranc., M.: Numerical study of a junction between a three-dimensional elastic structure and a plate. Comput. Math. Appl. Mech. Eng.74, 207-222 (1989) · Zbl 0687.73067
[2] Aufranc, M.: Sur quelques problèmes de jonctions dans les multi-structures elastiques. Université Pierre et Marie Curie. Paris (1990) · Zbl 0858.73009
[3] Bjørstad, P.E., Widlund, O.B.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Number. Anal.23, 1097-1120 (1986) · Zbl 0615.65113
[4] Bourquin, F., Ciarlet, P.G.: Modeling and justification of eigenvalue problems for junctions between elastic structures. J. Funct. Anal.87, 392-427 (1989) · Zbl 0699.73010
[5] Bramble, J.H., Pasciak, J.E., Schatz, A.H.: An iterative method for elliptic problems on regions partitioned into substructures, Math. Comput.46, 361-369 (1986) · Zbl 0595.65111
[6] Caillerie, D.: The effect of a thin inclusion of high rigidity in an elastic body. Math. Methods Appl. Sci.2, 251-270 (1980) · Zbl 0446.73014
[7] Ciarlet, P.G.: Variational Methods for Non-Linear Boundary-Value Problems. Ph.D. Thesis, Case Institute of Technology, Cleveland (1966)
[8] Ciarlet, P.G.: A justification of the von Kármán equations. Arch. Rat. Mech. Anal.73, 349-389 (1980) · Zbl 0443.73034
[9] Ciarlet, P.G.: Mathematical Elasticity, Vol. I: Three-dimensional elasticity. Amsterdam: North-Holland 1988 · Zbl 0648.73014
[10] Ciarlet, P.G.: The method of asymptotic expansions for a nonlinearly elastic clamped plate. In: Nonlinear partial differential equations and their applications, Collège de France Seminar, Volume X (Brezis, H., Lions, J.-L. (eds.). (to appear) 1990
[11] Ciarlet, P.G.: Mathematical Elasticity, Vol. II: Lower-Dimensional Theories of Plates and Rods. Amsterdam, North-Holland 1991
[12] Ciarlet, P.G., Kestuynder, P.: A justification of the two-dimensional plate model. J. Mécanique18, 315-344 (1979) · Zbl 0415.73072
[13] Ciarlet, P.G., Kesavan, S.: Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory. Comput., Methods Appl. Mech. Eng.26, 149-172 (1981) · Zbl 0489.73057
[14] Ciarlet, P.G., LeDret, H.: Justification of the boundary conditions of a clamped plate by an asymptotic analysis. Asymptotic Anal.2, 257-277 (1989) · Zbl 0699.73011
[15] Ciarlet, P.G., LeDret, H., Nzengwa, R.: Junctions between three-dimensional and two-dimensional linearly elastic structures. J. Math. Pures Appl.68, 261-295 (1989) · Zbl 0661.73013
[16] Ciarlet, P.G., Miara, B.: Junctions between three-dimensional elastic structures and shallow shells (to appear) (1990) · Zbl 0707.73044
[17] Ciarlet, P.G., Schultz, M.H., Varga, R.S.: Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problems. Numer. Math.9, 394-430 (1967) · Zbl 0155.20403
[18] Ciarlet, P.G., Varga, R.S.: Discrete variational Green’s function. II. One dimensional problem. Numer. Math.16, 115-128 (1970) · Zbl 0245.34012
[19] Cohen, G., Miara, B.: Optimization with an auxiliary constraint and decomposition. SIAM J. Control. Optimization28, 137-157 (1990) · Zbl 0693.49017
[20] Destuynder, P.: Application de la Méthode des Développements Asymptotiques à la Théorie des Plaques et des Coques. Doctoral Dissertation., Université Pierre et Marie Curie, Paris (1980)
[21] Destuynder, P.: Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité. RAIRO, Modelisation Math. Anal. Numer.15, 331-369 (1981) · Zbl 0479.73042
[22] Duvaut, G., Lions, J.-L.: Les Inéquations en Mécanique et en Physique. Paris: Dunod 1972 · Zbl 0298.73001
[23] Fichera, G.: Existence theorems in elasticity. In: Handbuch der Physik, Vol. VIa/2 (Flügge, S., Truesdell, C., eds.), pp. 347-389. Berlin Heidelberg New York: Springer 1972
[24] Fraeijs de Veubeke, B.M.: A course in elasticity. Berlin Heidelberg New York: Springer 1979 · Zbl 0419.73001
[25] Friedrichs, K.O.: Dressler, R.F.: A boundary-layer theory for elastic plates. Commun. Pure Appl. Math.14, 1-33 (1961) · Zbl 0096.40001
[26] Germain, P.: Mécanique, Tome I, Ecole Polytechnique. Paris: Ellipses 1986a
[27] Germain, P.: Mécanique, Tome II, Ecole Polytechnique. Paris: Ellipses 1986b
[28] Goldenveizer, A. L.: Derivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity. Prikl. Mat. Mekh.26, 668-686 (1962). [English translation: J. Appl. Math. Mech. (1964), 100-1025]
[29] Goldenveizer, A.L.: The principles of reducing three-dimensional problems of elasticity to two-dimensional problems of the theory of plates and shells. In: Proceedings of the 11th International Congress of Theoretical and Applied Mechanics. Görtler, H. (ed.), pp. 306-311. Berlin Heidelberg New York: Springer 1964
[30] Gurtin, M.E.: The linear theory of elasticity. In: Handbuch der Physik, Vol. VIa/2 (Flügge, S., Truesdell, C., eds.), pp. 1-295. Berlin Heidelberg New York: Springer 1972
[31] John, F.: Refined interior equations for thin elastic shells. Commun. Pure Appl. Math.24, 583-615 (1971) · Zbl 0299.73037
[32] Kondratiev, V.A., Oleinik, O.A.: On Korn’s inequalities. C.R. Acad. Sci. Paris, Sér. I,308, 483-487 (1989) · Zbl 0698.35067
[33] Lagnese, J.E., Lions, J.-L.: Modelling, Analysis and Control of Thin Plates. Paris: Masson 1988 · Zbl 0662.73039
[34] Landau, L., Lifchitz, E.: Théorie de l’Elasticité, Moscow: Mir 1967
[35] LeDret, H.: Folded plates revisited. Comput. Mech.5, 345-365 (1989a) · Zbl 0741.73025
[36] LeDret, H.: Modeling of the junction between two rods. J. Math. Pures Appl.68, 365-397 (1989b) · Zbl 0743.73020
[37] LeDret, H.: Modeling of a folded plate, Comput. Mech.5, 401-416 (1990a) · Zbl 0741.73026
[38] LeDret, H.: Elastodynamics for multiplate structures (to appear) (1990b)
[39] Leguillon, D., Sanchez-Palencia, E.: Approximation of a two-dimensional problem of junctions. (to appear) (1989) · Zbl 0736.73042
[40] Lions, J.-L.: Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Lecture Notes in Mathematics, Vol. 323. Berlin Heidelberg New York: Springer 1973 · Zbl 0268.49001
[41] Lions, J.-L.: Exact controllability, stabilization and perturbations for distributed systems (John von Neumann Lecture), SIAM Review30, 1-68 (1988a) · Zbl 0644.49028
[42] Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1: Contrôlabilité Exacte. Paris: Masson 1988b · Zbl 0653.93002
[43] Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 2: Perturbations. Paris: Masson 1988c · Zbl 0653.93003
[44] Lions, J.-L.: Lectures notes 1988-1989. Collège de France, Paris 1989
[45] Naghdi, P.M.: The theory of shells and plates. In: Handbuch der Physik, Vol. VIa/2 (Flügge S., Truesdell, C., eds.), pp. 425-640. Berlin Heidelberg New York, Springer 1972
[46] Plemmons, R.J.: Substructuring and nullspace methods for equilibrium equations. Number. Math. (1990) · Zbl 0704.65030
[47] Raoult, A.: Construction d’un modèle d’évolution de plaques avect terme d’inertie de rotation, Ann. Mat. Pura Appl.139, 361-400 (1985) · Zbl 0596.73033
[48] Raoult, A.: Modeling of time-dependent problems for junctions between elastic multi-structures. (to appear) (1990)
[49] Reiss, E.L., Locke, S.: On the theory of plane stress. Q. Appl. Math.19, 195-203 (1961) · Zbl 0107.18303
[50] Sanchez-Palencia, E.: Forces appliquées à une petite région de la surface d’un corps élastique. Application aux jonctions. C.R. Acad. Sci. Paris, Sér. II,307, 689-694 (1988) · Zbl 0644.73026
[51] Sanchez-Palencia, E.: Singularities and junctions in elasticity. In: Nonlinear partial differential equations and their applications, Collège de France Seminar, Volume XI, Brezis, H., Lions, J.-L. (eds.). 1990 (to appear)
[52] Timoshenko, S., Woinowsky-Krieger, S.: Theory of plates and shells. New York: McGraw-Hill 1959 · Zbl 0114.40801
[53] Varga, R.S.: Hermite interpolation-type Ritz methods for two-point boundary value problems. In: Numerical solution of partial differential equations, Bramble, J.H. (ed.), pp. 365-372. New York: Academic Press 1966
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.