Mixed stabilized finite element methods in nonlinear solid mechanics. I: Formulation. (English) Zbl 1231.74404

Summary: This paper exploits the concept of stabilized finite element methods to formulate stable mixed stress/displacement and strain/displacement finite elements for the solution of nonlinear solid mechanics problems. The different assumptions and approximations used to derive the methods are exposed. The proposed procedure is very general, applicable to 2D and 3D problems. Implementation and computational aspects are also discussed, showing that a robust application of the proposed formulation is feasible. Numerical examples show that the results obtained compare favorably with those obtained with the corresponding irreducible formulation.


74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity


Full Text: DOI


[1] Fraeijs de Veubeke, B.X., Displacement and equilibrium models in the finite element method, () · Zbl 0359.73007
[2] Malkus, D.S.; Hughes, T.J.R., Mixed finite element methods — reduced and selective integration techniques: a unification of concepts, Comput. meth. appl. mech. eng., 15, 63-81, (1978) · Zbl 0381.73075
[3] Arnold, D.N.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 337-344, (1984) · Zbl 0593.76039
[4] Simo, J.C.; Taylor, R.L.; Pister, K.S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. meth. appl. mech. eng., 51, 177-208, (1985) · Zbl 0554.73036
[5] Simo, J.C.; Rifai, M.S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. numer. meth. eng., 29, 1595-1638, (1990) · Zbl 0724.73222
[6] Reddy, B.D.; Simo, J.C., Stability and convergence of a class of enhanced assumed strain methods, SIAM J. num. anal., 32, 1705-1728, (1995) · Zbl 0855.73073
[7] Bonet, J.; Burton, A.J., A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications, Commun. numer. meth. eng., 1, 4, 437-449, (1998) · Zbl 0906.73060
[8] Zienkiewicz, O.C.; Rojek, J.; Taylor, R.L.; Pastor, M., Triangles and tetrahedra in explicit dynamic codes for solids, Int. J. numer. meth. eng., 43, 565-583, (1998) · Zbl 0939.74073
[9] Taylor, R.L.A., Mixed-enhanced formulation for tetrahedral elements, Int. J. num. meth. eng., 47, 205-227, (2000) · Zbl 0985.74074
[10] Dohrmann, C.R.; Heinstein, M.W.; Jung, J.; Key, S.W.; Witkowsky, W.R., Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes, Int. J. numer. meth. eng., 47, 1549-1568, (2000) · Zbl 0989.74067
[11] Bonet, J.; Marriot, H.; Hassan, O., An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications, Commun. numer. meth. eng., 17, 551-561, (2001) · Zbl 1154.74307
[12] Bonet, J.; Marriot, H.; Hassan, O., Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications, Int. J. numer. meth. eng., 50, 119-133, (2001) · Zbl 1082.74547
[13] Oñate, E.; Rojek, J.; Taylor, R.L.; Zienkiewicz, O.C., Linear triangles and tetrahedra for incompressible problem using a finite calculus formulation, () · Zbl 1043.74045
[14] de Souza Neto, E.A.; Pires, F.M.A.; Owen, D.R.J., A new F-bar-method for linear triangles and tetrahedra in the finite strain analysis of nearly incompressible solids, () · Zbl 1179.74159
[15] Zienkiewicz, O.C.; Taylor, R.L.; Baynham, J.A.W., Mixed and irreducible formulations in finite element analysis, () · Zbl 0484.73056
[16] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (2000), Butterworth-Heinemann Oxford · Zbl 0991.74002
[17] Bischoff, M.; Bletzinger, K.-U., Improving stability and accuracy of Reissner-Mindlin plate finite elements via algebraic subgrid scale stabilization, Comput. meth. appl. mech. eng., 193, 1517-1528, (2004) · Zbl 1079.74633
[18] Arnold, D.N., Mixed finite element methods for elliptic problems, Comput. meth. appl. mech. eng., 82, 281-300, (1990) · Zbl 0729.73198
[19] Brezzi, F.; Fortin, M., Mixed and hybrid finite element methods, (1991), Spinger New York · Zbl 0788.73002
[20] Brezzi, F.; Fortin, M.; Marini, D., Mixed finite element methods with continuous stresses, Math. models meth. appl. sci., 3, 275-287, (1993) · Zbl 0774.73066
[21] Mijuca, D., On hexahedral finite element HC8/27 in elasticity, Comput. mech., 33, 466-480, (2004) · Zbl 1115.74372
[22] Arnold, D.N.; Winther, R., Mixed finite elements for elasticity, Numer. math., 92, 401-419, (2002) · Zbl 1090.74051
[23] Arnold, D.N.; Awanou, G.; Winther, R., Finite elements for symmetric tensors in three dimensions, Math. comput., 77, 1229-1251, (2008) · Zbl 1285.74013
[24] Hughes, T.J.R., Multiscale phenomena: Green’s function, Dirichlet-to Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations, Comput. meth. appl. mech. eng., 127, 387-401, (1995) · Zbl 0866.76044
[25] Hughes, T.J.R.; Feijoó, G.R.; Mazzei, L.; Quincy, J.B., The variational multiscale method—a paradigm for computational mechanics, Comput. meth. appl. mech. eng., 166, 3-28, (1998) · Zbl 1017.65525
[26] Codina, R.; Blasco, J., A finite element method for the Stokes problem allowing equal velocity-pressure interpolations, Comput. meth. appl. mech. eng., 143, 373-391, (1997) · Zbl 0893.76040
[27] Codina, R., Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. meth. appl. mech. eng., 190, 1579-1599, (2000) · Zbl 0998.76047
[28] Codina, R., Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales, Appl. numer. math., 58, 264-283, (2008) · Zbl 1144.76029
[29] Codina, R., Finite element approximation of the three field formulation of the Stokes problem using arbitrary interpolations, SIAM J. numer. anal., 47, 699-718, (2009) · Zbl 1391.76316
[30] Badia, S.; Codina, R., Unified stabilized finite element formulations for the Stokes and the Darcy problems, SIAM journal on numerical analysis, 17, 309-330, (2009)
[31] Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C.; Cervera, M., A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations, Comput. meth. appl. mech. eng., 191, 5253-5264, (2002) · Zbl 1083.74584
[32] Cervera, M.; Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C., Mixed linear/linear simplicial elements for incompressible elasticity and plasticity, Comput. meth. appl. mech. eng., 192, 5249-5263, (2003) · Zbl 1054.74050
[33] Chiumenti, M.; Valverde, Q.; Agelet de Saracibar, C.; Cervera, M., A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra, Int. J. plast., 20, 1487-1504, (2004) · Zbl 1066.74587
[34] Cervera, M.; Chiumenti, M.; Agelet de Saracibar, C., Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity, Int. J. numer. anal. meth. geomechanics, 28, 373-393, (2004) · Zbl 1071.74050
[35] Cervera, M.; Chiumenti, M.; Agelet de Saracibar, C., Shear band localization via local J_{2} continuum damage mechanics, Comput. meth. appl. mech. eng., 193, 849-880, (2004) · Zbl 1106.74312
[36] Cervera, M.; Chiumenti, M., Size effect and localization in J_{2} plasticity, International journal of solids and structures, 46, 3301-3312, (2009) · Zbl 1167.74341
[37] Pastor, M.; Li, T.; Liu, X.; Zienkiewicz, O.C., Stabilized low-order finite elements for failure and localization problems in undrained soils and foundations, Comput. meth. appl. mech. eng., 174, 219-234, (1999) · Zbl 0958.74069
[38] Mabssout, M.; Herreros, M.I.; Pastor, M., Wave propagation and localization problems in saturated viscoplastic geomaterials, Comput. meth. appl. mech. eng., 192, 955-971, (2003) · Zbl 1025.74032
[39] Mabssout, M.; Pastor, M., A Taylor-Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua, Int. J. numer. meth. eng., 68, 425-447, (2006) · Zbl 1127.74019
[40] Cervera, M., Chiumenti, M. and Codina, R.. Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: strain localization, Comp. Meth. in Appl. Mech. and Eng. (this issue). · Zbl 1231.74405
[41] Djoko, J.K.; Lamichhane, B.P.; Reddy, B.D.; Wohlmuth, B.I., Conditions for equivalence between the hu-washizu and related formulations, and computational behavior in the incompressible limit, Comput. meth. appl. mech. eng., 195, 4161-4178, (2006) · Zbl 1123.74020
[42] Codina, R.; Principe, J.; Baiges, J., Subscales on the element boundaries in the variational two-scale finite element method, Comput. meth. appl. mech. eng., 198, 838-852, (2009) · Zbl 1229.76046
[43] Badia, S. and Codina, R. Stabilized continuous and discontinuous Galerkin techniques for Darcy flow, Comp. Meth. Appl. Mech. Eng. 199 (2010) 1654-1667. E-prints UPC: http://upcommons.upc.edu/e-prints/handle/2117/2447. · Zbl 1231.76134
[44] Codina, R., Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. meth. appl. mech. eng., 191, 4295-4321, (2002) · Zbl 1015.76045
[45] Baiocchi, C.; Brezzi, F.; Franca, L., Virtual bubbles and Galerkin/least-squares type methods (ga.L.S.), Comput. meth. appl. mech. eng., 105, 125-141, (1993) · Zbl 0772.76033
[46] Brezzi, F.; Bristeau, M.O.; Franca, L.; Mallet, M.; Rogé, G., A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput. meth. appl. mech. eng., 96, 117-129, (1992) · Zbl 0756.76044
[47] Kasper, E.P.; Taylor, R.L., A mixed-enhanced strain method. I: geometrically linear problems. II: geometrically nonlinear problems, Comput. struct., 75, (2000), 237-250, 251-260
[48] Cervera, M., Agelet de Saracibar, C. and Chiumenti, M. COMET: COupled MEchanical and Thermal analysis. Data Input Manual, Version 5.0, Technical report IT-308, http://www.cimne.upc.es, 2002. · Zbl 1083.74584
[49] GiD: The personal pre and post preprocessor. http://www.gid.cimne.upc.es, 2002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.