##
**Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes.**
*(English)*
Zbl 0773.73085

Summary: A family of new 4-noded membrane elements with drilling degrees of freedom and unsymmetric assumed stresses is presented; it is derived from a mixed variational principle originally formulated for finite strain analysis and already used in the literature to develop a purely kinematic membrane model. The performance of these elements, investigated through some well established benchmark problems, is found to be fairly good and their accuracy is comparable with that given by models with a larger number of nodal parameters.

PDF
BibTeX
XML
Cite

\textit{A. Cazzani} and \textit{S. N. Atluri}, Comput. Mech. 11, No. 4, 229--251 (1993; Zbl 0773.73085)

Full Text:
DOI

### References:

[1] | Allman, D. J. (1984): A compatible triangular element including vertex rotations for plane elasticity analysis. Comp. and Struct. 19, 1-8 · Zbl 0548.73049 |

[2] | Allman, D. J. (1988): A quadrilateral finite element including vertex rotations for plane elasticity analysis. Intern. J. Numer. Meth. Eng. 26, 717-730 · Zbl 0633.73073 |

[3] | Atluri, S. N. (1979): On rate principles for finite strain analysis of elastic and inelastic nonlinear solids. In: recent research on mechanical behaviour. pp 79-107, University of tokyo Press, Tokyo |

[4] | Atluri, S. N. (1980): On some new general and complementary energy theorems for the rate problems in finite strain, classical elastoplasticity. J. Struct. Mech. 8, 61-92 |

[5] | Atluri, S. N. (1984): Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations, for computational analyses of finitely deformed solids, with application to plates and shells?I Theory. Comp. and Struct. 18, 98-116 · Zbl 0524.73043 |

[6] | Atluri, S. N.; Murakawa, H. (1977): On hybrid finite element models in nonlinear solid mechanics. In: Bergan, P. G. et al. (eds): finite elements in nonlinear mechanics. Tapir Press, Norway 1, 25-69 |

[7] | Bergan, P. G.; Felippa, C. A. (1985): A triangular membrane element with rotational degrees of freedom. Comp. Meth. Appl. Mech. Eng. 50, 25-69 · Zbl 0593.73073 |

[8] | Cook, R. D. (1974): Improved two dimensional finite elements. ASCE J. Struct. Div. ST 6, pp 1851-1863 |

[9] | Cook, R. D. (1981): Concepts and applications of finite element analysis. (2nd ed). Wiley: New York. · Zbl 0534.73056 |

[10] | Cook, R. D. (1986): On the Allman triangle and a related quadrilateral element. Comp. and Struct. 22, 1065-1067 |

[11] | Cook, R. D. (1987): A plane hybrid element with rotational d.o.f. and adjustable stiffness. Intern. J. Numer. Meth. Eng. 24, 1499-1508 · Zbl 0615.73084 |

[12] | Fraeijs de Veubeke, B. M. (1975): Stress function approach. Proceedings of world congress of finite element methods in Structural Mechanics, Bournemouth, U.K., pp J1?J51 |

[13] | Fraeijs de Veubeke, B. M.; Millard, A. (1976): Discretization of the stress fields in the finite element method. em Journal of the Franklin Institute. 302, 389-412 · Zbl 0352.73061 |

[14] | Ibrahimbegovich, A.; Taylor, R. L.; Wilson, E. L. (1990): A robust quadrilateral membrane finite element with drilling degrees of freedom. Intern. J. Numer. Meth. Eng. 30 445-457 · Zbl 0729.73207 |

[15] | Iura, M.; Atluri, S. N. (1992): Formulation of a membrane finite element with drilling degrees of freedom. Comp. Mech. 9, 417-428 · Zbl 0761.73109 |

[16] | MacNeal, R. H.; Harder, R. L. (1988): A proposed standard set of problems to test finite element accuracy. Finite elements in analysis and design. 1, 3-20 |

[17] | MacNeal, R. H.; Harder, R. L. (1988): A refined four-noded membrane element with rotational degrees of freedom. Comp. and Struct. 28, 75-84 · Zbl 0631.73064 |

[18] | Murakawa, H. (1978): Incremental hybrid finite element methods for finite deformation problems (with special emphasis on complementary energy principle). Ph.D. Thesis, Georgia Institute of Technology |

[19] | Murakawa, H.; Atluri, S. N. (1978): Finite elasticity solutions using hybrid finite elements based on a complementary energy principle. ASME J. Appl. Mech. 45, 539-547 · Zbl 0392.73038 |

[20] | Murakawa, H.; Atluri, S. N. (1979): Finite elasticity solutions using hybrid finite elements based on a complementary energy principle. Part 2: incompressible materials. ASME J. Appl. Mech. 46, 71-77 · Zbl 0404.73075 |

[21] | Pian, T. H. H. (1964): Derivation of element stiffness matrices by assumed stress distributions. AIAA J. 2, 1333-1336 |

[22] | Pian, T. H. H. (1985): Finite elements based on consistently assumed stresses and displacements. Finite Elements in analysis and Design 1, 131-140 · Zbl 0575.73088 |

[23] | Pian, T. H. H.; Chen, D. (1983): On the suppression of zero energy deformation modes. Intern. J. Numer. Meth. Eng. 19, 1741-1752 · Zbl 0537.73059 |

[24] | Pian, T. H. H.; Sumihara, K. (1984): Rational approach for assumed stress finite elements. Intern. J. Numer. Meth. Eng. 20, 1685-1695 · Zbl 0544.73095 |

[25] | Pian, T. H. H.; Tong, P. (1986): Relations between incompatible displacement model and hybrid stress model. Intern. J. Numer. Meth. Eng. 22, 173-181 · Zbl 0593.73068 |

[26] | Pian, T. H. H.; Wu, C.-C. (1988): A rational approach for choosing stress terms for hybrid finite element formulations Intern. J. Numer. Meth. Eng. 26, 2331-2343 · Zbl 0661.73045 |

[27] | Punch, E. F. (1983): Stable, invariant, least-order isoparametric mixed-hubrid stress elements: Linear elastic continua, and finitely deformed plates and shells. Ph.D. Thesis, Georgia Institute of Technology |

[28] | Punch, E. F.; Atluri, S. N. (1984): Development and testing of stable, invariant, isoparametric curvilinear 2-and 3-D hybrid stress elements. Comp. Meth. Appl. Mech. Eng. 47, 331-356 · Zbl 0542.73101 |

[29] | Reissner, E. (1965): A note on variational principles in elasticity. Intern. J. Solids Struct. 1, 93-95 |

[30] | Rubinstein, R.; Punch, E. F.; Atluri, S. N. (1983): An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable, invariant stress fields. comp. Meth. Appl. Mech. Eng. 38, 63-92 · Zbl 0519.73070 |

[31] | Wu, C.-C.; Huang, M.-G.; Pian, T. H. H. (1987). Consistency condition and convergence criteria of incompatible elements: general formulation of incompatible functions and its application. Comp. and Struct. 27, 639-644 · Zbl 0623.73077 |

[32] | Yunus, S. M. (1988): A study of different hybrid elements with and without rotational d.o.f. for plane stress/plane strain problems. Comp. and Struct. 30, 1127-1133 · Zbl 0678.73046 |

[33] | Yunus, S. M.; Saigal, S.; Cook, R. D. (1989): On improved hybrid finite elements with rotational degrees of freedom. Intern. J. Numer. Meth. Eng. 28, 785-800 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.