×

Detailed simulation of complex hydraulic problems with macroscopic and mesoscopic mathematical methods. (English) Zbl 1299.76038

Summary: The numerical simulation of fast-moving fronts originating from dam or levee breaches is a challenging task for small scale engineering projects. In this work, the use of fully three-dimensional Navier-Stokes (NS) equations and lattice Boltzmann method (LBM) is proposed for testing the validity of, respectively, macroscopic and mesoscopic mathematical models. Macroscopic simulations are performed employing an open-source computational fluid dynamics (CFD) code that solves the NS combined with the volume of fluid (VOF) multiphase method to represent free-surface flows. The mesoscopic model is a front-tracking experimental variant of the LBM. In the proposed LBM the air-gas interface is represented as a surface with zero thickness that handles the passage of the density field from the light to the dense phase and vice versa. A single set of LBM equations represents the liquid phase, while the free surface is characterized by an additional variable, the liquid volume fraction. Case studies show advantages and disadvantages of the proposed LBM and NS with specific regard to the computational efficiency and accuracy in dealing with the simulation of flows through complex geometries. In particular, the validation of the model application is developed by simulating the flow propagating through a synthetic urban setting and comparing results with analytical and experimental laboratory measurements.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1061/(ASCE)0733-9429(1999)125:9(924) · doi:10.1061/(ASCE)0733-9429(1999)125:9(924)
[2] DOI: 10.1007/s10346-009-0194-z · doi:10.1007/s10346-009-0194-z
[3] DOI: 10.1017/S0022112010003599 · Zbl 1205.76228 · doi:10.1017/S0022112010003599
[4] Hydrology and Earth System Sciences 14 (4) pp 705– (2010) · doi:10.5194/hess-14-705-2010
[5] DOI: 10.3934/dcdsb.2010.13.799 · Zbl 1330.76021 · doi:10.3934/dcdsb.2010.13.799
[6] DOI: 10.1016/j.advwatres.2010.01.005 · doi:10.1016/j.advwatres.2010.01.005
[7] Science of Tsunami Hazards 20 pp 241– (2002)
[8] DOI: 10.1504/PCFD.2011.038836 · Zbl 1278.76025 · doi:10.1504/PCFD.2011.038836
[9] Physics Report 222 (3) pp 145– (1992) · doi:10.1016/0370-1573(92)90090-M
[10] Numerical Mathematics and Scientific Computation (2001)
[11] DOI: 10.1103/PhysRevE.81.016311 · doi:10.1103/PhysRevE.81.016311
[12] Water Resources Research 41 (8) (2005)
[13] Physical Review E 47 pp 1815– (1993) · doi:10.1103/PhysRevE.47.1815
[14] DOI: 10.4208/cicp.2009.09.018 · Zbl 1364.76172 · doi:10.4208/cicp.2009.09.018
[15] DOI: 10.1039/c002974b · doi:10.1039/c002974b
[16] DOI: 10.1061/(ASCE)HY.1943-7900.0000470 · doi:10.1061/(ASCE)HY.1943-7900.0000470
[17] Communications in Computational Physics 2 (6) pp 1071– (2007)
[19] (2004)
[20] DOI: 10.1002/fld.1819 · Zbl 1394.76101 · doi:10.1002/fld.1819
[21] DOI: 10.1007/s10955-005-8879-8 · Zbl 1108.76059 · doi:10.1007/s10955-005-8879-8
[22] DOI: 10.1016/j.compfluid.2005.06.009 · Zbl 1177.76331 · doi:10.1016/j.compfluid.2005.06.009
[23] DOI: 10.1108/09615531111135846 · doi:10.1108/09615531111135846
[24] DOI: 10.4208/cicp.221209.250510a · Zbl 1364.76174 · doi:10.4208/cicp.221209.250510a
[25] Journal of Hydraulic Engineering 123 (9) pp 807– (1997) · doi:10.1061/(ASCE)0733-9429(1997)123:9(807)
[26] Journal of Hydraulic Research 45 pp 27– (2007) · doi:10.1080/00221686.2007.9521830
[27] Hydrological Processes 20 pp 1541– (2006) · doi:10.1002/hyp.5935
[28] Physical Review Letters 75 pp 244– (1995) · doi:10.1103/PhysRevLett.75.244
[29] DOI: 10.1006/jcph.1999.6276 · Zbl 0955.76058 · doi:10.1006/jcph.1999.6276
[30] (2008)
[31] DOI: 10.1103/PhysRev.94.511 · Zbl 0055.23609 · doi:10.1103/PhysRev.94.511
[32] DOI: 10.1146/annurev.fluid.30.1.329 · Zbl 1398.76180 · doi:10.1146/annurev.fluid.30.1.329
[33] DOI: 10.1016/j.matcom.2006.05.007 · Zbl 1116.76068 · doi:10.1016/j.matcom.2006.05.007
[34] DOI: 10.1103/PhysRevE.48.4823 · doi:10.1103/PhysRevE.48.4823
[35] Journal of Computational Physics 155 pp 307– (1999) · Zbl 0960.82028 · doi:10.1006/jcph.1999.6334
[36] (1993)
[37] Monthly Weather Review 91 pp 99– (1963) · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[38] Ver Deutsch ingenieur zeitschr 36 (33, part 3) pp 947– (1892)
[39] Proceedings of the International Association of Scientific Hydrology Assemblée Générale, Rome, Italy 3 (38) pp 319– (1954)
[40] DOI: 10.3826/jhr.2009.2865 · doi:10.3826/jhr.2009.2865
[41] Publications Scientifiques et Techniques du Ministère de l’air 410 (1965)
[42] International Journal for Numerical Methods in Fluids 16 (6) pp 489– (1993) · Zbl 0766.76067 · doi:10.1002/fld.1650160604
[43] Journal of Hydraulic Engineering 116 (8) pp 1013– (1990) · doi:10.1061/(ASCE)0733-9429(1990)116:8(1013)
[44] DOI: 10.3826/jhr.2008.3164 · doi:10.3826/jhr.2008.3164
[45] DOI: 10.1006/jcph.1998.6089 · Zbl 0917.76061 · doi:10.1006/jcph.1998.6089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.