×

zbMATH — the first resource for mathematics

Implicit meanflow-multigrid algorithms for Reynolds stress model computation of 3-D anisotropy-driven and compressible flows. (English) Zbl 1421.76170
Summary: The present paper investigates the multigrid (MG) acceleration of compressible Reynolds-averaged Navier-Stokes computations using Reynolds-stress model 7-equation turbulence closures, as well as lower-level 2-equation models. The basic single-grid SG algorithm combines upwind-biased discretization with a subiterative local-dual-time-stepping time-integration procedure. MG acceleration, using characteristic MG restriction and prolongation operators, is applied on meanflow variables only (MF-MG), turbulence variables being simply injected onto coarser grids. A previously developed non-time-consistent (for steady flows) full-approximation-multigrid (s-MG) is assessed for 3-D anisotropy-driven and/or separated flows, which are dominated by the convergence of turbulence variables. Even for these difficult test cases CPU-speed-ups \(r_{\text{CPUSUP}}\)[3, 5] are obtained. Alternative, potentially time-consistent approaches (unsteady u-MG), where MG acceleration is applied at each subiteration, are also examined, using different subiterative strategies, MG cycles, and turbulence models. For 2-D shock wave/turbulent boundary layer interaction, the fastest s-MG approach, with a V(2, 0) sawtooth cycle, systematically yields CPU-speed-ups of \(5\pm \frac 12 \), quasi-independent of the particular turbulence closure used.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76N15 Gas dynamics (general theory)
35Q30 Navier-Stokes equations
76F40 Turbulent boundary layers
76L05 Shock waves and blast waves in fluid mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Vandromme, About the coupling of turbulence closure models with averaged Navier-Stokes equations, Journal of Computational Physics 65 pp 386– (1986) · Zbl 0627.76065
[2] Morrison JH. A compressible Navier-Stokes solver with 2-equation and Reynolds-stress turbulence closure models. Contr. Report CR-4440, NASA 1992 (also AIAA Paper 1990-5251, 1990).
[3] Lien, A pressure-velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment closure, ASME Journal of Fluids Engineering 115 pp 717– (1993)
[4] Chuang, Comparison of varients of the bi-conjugate gradient method for compressible Navier-Stokes with 2-moment closure, International Journal for Numerical Methods in Fluids 20 pp 233– (1995)
[5] Davidson, Reynolds-stress transport modelling of shock-induced separated flow, Computers and Fluids 24 pp 253– (1995) · Zbl 0825.76508
[6] Leschziner, Computation of aerodynamic flows with turbulence-transport models based on 2-moment closure, Computers and Fluids 24 pp 377– (1995) · Zbl 0837.76056
[7] Ladeinde, Supersonic flux-split procedure for second moments of turbulence, AIAA Journal 33 pp 1185– (1995) · Zbl 0846.76071
[8] Ladeinde, Calculation of Reynolds-stresses in turbulent supersonic flows, International Journal for Numerical Methods in Fluids 21 pp 49– (1995) · Zbl 0841.76069
[9] Zha, 3-D shock/boundary-layer interaction using Reynolds stress equation turbulence model, AIAA Journal 34 pp 1313– (1996) · Zbl 0900.76320
[10] Gerolymos, Near-wall Reynolds-stress 3-D transonic flows computation, AIAA Journal 35 pp 228– (1997) · Zbl 0900.76414
[11] Chenault, k-{\(\epsilon\)} and Reynolds stress turbulence model comparisons for 2-D injection flows, AIAA Journal 36 pp 1401– (1998)
[12] Chenault, Numerical investigation of supersonic injection using a Reynolds-stress turbulence model, AIAA Journal 37 pp 1257– (1999)
[13] Batten, Reynolds-stress-transport modeling for compressible aerodynamics applications, AIAA Journal 37 pp 785– (1999)
[14] Chassaing, Efficient and robust Reynolds-stress model computation of 3-D compressible flows, AIAA Journal 41 pp 763– (2003)
[15] Chassaing, Reynolds-stress model dual-time-stepping computation of unsteady 3-D flows, AIAA Journal 41 pp 1882– (2003)
[16] Alpman, CD-Rom Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit (2005)
[17] Gerolymos, Mean-flow-multigrid for implicit Reynolds-stress-model computations, AIAA Journal 43 pp 1887– (2005)
[18] Gerolymos, Robust implicit multigrid Reynolds-stress-model computation of 3-D turbomachinery flows, ASME Journal of Fluids Engineering 129 pp 1212– (2007)
[19] Demuren, Multigrid acceleration and turbulence models for computations of 3-D turbulence jets in crossflow, International Journal of Heat and Mass Transfer 35 pp 2783– (1992) · Zbl 0825.76523
[20] Lien, Multigrid acceleration for recirculating laminar and turbulent flows computed with a non-orthogonal collocated finite-volume scheme, Computer Methods in Applied Mechanics and Engineering 118 pp 351– (1994) · Zbl 0848.76062
[21] Bigarella, Advanced eddy-viscosity and Reynolds-stress turbulence model simulations of aerospace applications, AIAA Journal 45 pp 2369– (2007)
[22] Launder, Progress in the development of a Reynolds-stress turbulence closure, Journal of Fluid Mechanics 68 pp 537– (1975) · Zbl 0301.76030
[23] Gibson, Ground effects on pressure fluctuations in the atmospheric boundary-layer, Journal of Fluid Mechanics 86 pp 491– (1978) · Zbl 0377.76062
[24] Gerolymos, Wall-normal-free near-wall Reynolds-stress closure for 3-D compressible separated flows, AIAA Journal 39 pp 1833– (2001)
[25] Gerolymos, Contribution to the single-point-closure Reynolds-stress modelling of inhomogeneous flow, Theoretical and Applied Fluid Dynamics 17 pp 407– (2004)
[26] Sauret, Near-wall turbulent pressure diffusion modelling and influence in 3-D secondary flows, ASME Journal of Fluids Engineering 129 pp 634– (2007)
[27] Hirsch, Numerical Computation of Internal and External Flows 2 pp 326– (1990) · Zbl 0742.76001
[28] Hirsch, Numerical Computation of Internal and External Flows 1 pp 161– (1988) · Zbl 0662.76001
[29] Brandt, Multilevel adaptive solutions to boundary-value problems, Mathematics of Computation 31 pp 330– (1977) · Zbl 0373.65054
[30] Claus, Multigrid calculations of a jet in crossflow, Journal of Propulsion and Power 8 pp 425– (1992)
[31] Shyy, Multigrid computation for turbulent recirculating flows in complex geometries, Numerical Heat Transfer: Part A 23 pp 79– (1993)
[32] Thakur, Development of pressure-based composite multigrid methods for complex fluid flows, Progress in Aerospace Sciences 32 pp 313– (1996)
[33] Nowak, Turbulent flow calculations by the nonlinear multigrid method, Zeitschrift für Angewandte Mathematik und Mechanik 76 pp 463– (1996)
[34] Cornelius, Calculation of 3-D turbulent flow with a finite volume multigrid method, International Journal for Numerical Methods in Fluids 31 pp 703– (1999)
[35] Vázquez, The robustness issue on multigrid schemes applied to the Navier-Stokes equations for laminar and turbulent, incompressible and compressible flows, International Journal for Numerical Methods in Fluids 45 pp 555– (2004) · Zbl 1085.76527
[36] Yan, A modified full multigrid algorithm for the Navier-Stokes equations, Computers and Fluids 36 pp 445– (2007)
[37] Gerolymos, Implicit multiple-grid solution of the compressible Navier-Stokes equations using k-{\(\epsilon\)} turbulence closure, AIAA Journal 28 pp 1707– (1990)
[38] Yokota, Diagonally inverted lower-upper factored implicit multigrid scheme for the 3-D Navier-Stokes equations, AIAA Journal 28 pp 1642– (1990) · Zbl 0711.76022
[39] Mavriplis, Multigrid solution of compressible turbulent flow on unstructured meshes using a 2-equation model, International Journal for Numerical Methods in Fluids 18 pp 887– (1994) · Zbl 0800.76290
[40] Braaten, 3-D unstructured adaptive multigrid scheme for the Navier-Stokes equations, AIAA Journal 34 pp 281– (1996) · Zbl 0896.76051
[41] Liu, A strongly coupled time-marching method for solving the Navier-Stokes and k-{\(\omega\)} turbulence model equations with multigrid, Journal of Computational Physics 128 pp 289– (1996) · Zbl 0862.76064
[42] Gerlinger, Multigrid convergence acceleration for turbulent supersonic flows, International Journal for Numerical Methods in Fluids 24 pp 1019– (1997) · Zbl 0889.76063
[43] Gerlinger, An implicit multigrid scheme for the compressible Navier-Stokes equations with low-Reynolds-number turbulence closure, ASME Journal of Fluids Engineering 120 pp 257– (1998)
[44] Carré, An implicit multigrid method by agglomeration applied to turbulent flows, Computers and Fluids 26 pp 299– (1997) · Zbl 0884.76049
[45] Carré, Parallel linear multigrid algorithms for the acceleration of compressible flow calculations, Computer Methods in Applied Mechanics and Engineering 184 pp 427– (2000) · Zbl 0978.76055
[46] Dick, Coupled solution of the steady compressible Navier-Stokes and k-{\(\epsilon\)} turbulence equations with a multigrid method, Applied Numerical Mathematics 23 pp 49– (1997) · Zbl 0869.76053
[47] Ålund, Parallel single grid and multigrid solution of industrial compressible flow problems, Computers and Fluids 26 pp 775– (1997)
[48] Demuren, Multigrid method for the Euler and Navier-Stokes equations, AIAA Journal 36 pp 31– (1998) · Zbl 0905.76052
[49] Park, Implementation of k-{\(\omega\)} turbulence models in an implicit multigrid method, AIAA Journal 42 pp 1348– (2004)
[50] Lambropoulos, Acceleration of a Navier-Stokes equation solver for unstructured grids using agglomeration multigrid and parallel processing, Computer Methods in Applied Mechanics and Engineering 193 pp 781– (2004) · Zbl 1106.76405
[51] Bigarella, Centered and upwind multigrid turbulent flow simulations of launch vehicle configurations, Journal of Spacecraft and Rockets 44 pp 52– (2007)
[52] Launder, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering 3 pp 269– (1974) · Zbl 0277.76049
[53] Chen, Near-wall turbulence models for complex flows including separation, AIAA Journal 26 pp 641– (1988)
[54] Lien, Assessment of turbulence-transport models including nonlinear RNG eddy-viscosity formulation and 2-moment closure for flow over a backward-facing step, Computers and Fluids 23 pp 983– (1994) · Zbl 0925.76403
[55] Brooks, Streamline-upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering 32 pp 199– (1982) · Zbl 0497.76041
[56] Hackbusch, Comparison of different multigrid variants for nonlinear equations, Zeitschrift für Angewandte Mathematik und Mechanik 72 pp 148– (1992)
[57] Launder, Application of the energy dissipation model of turbulence to the calculation of flows near a spinning disk, Letters in Heat and Mass Transfer 1 pp 131– (1974)
[58] Ni, A multiple grid scheme for solving the Euler equations, AIAA Journal 20 pp 1565– (1982) · Zbl 0496.76014
[59] Speziale, Critical evaluation of 2-equation models for near-wall turbulence, AIAA Journal 30 pp 324– (1992) · Zbl 0745.76030
[60] Turner, An investigation of turbulence modeling in transonic fans including a novel implementation of an implicit k-{\(\epsilon\)} turbulence model, ASME Journal of Turbomachinery 115 pp 249– (1993)
[61] Wilcox, Reassessment of the scale-determining equation for advanced turbulence models, AIAA Journal 26 pp 1299– (1988) · Zbl 0664.76057
[62] Coakley TJ, Huang PG. Turbulence modeling for high speed flows. AIAA Paper 1992-0436, 1983.
[63] Lam, Modified form of the k-{\(\epsilon\)} model for predicting wall turbulence, ASME Journal of Fluids Engineering 103 pp 456– (1981)
[64] Yang, New time-scale-based k-{\(\epsilon\)} model for near-wall turbulence, AIAA Journal 31 pp 1191– (1993) · Zbl 0800.76162
[65] Chien, Predictions of channel and boundary-layer flows with a low-Reynolds number turbulence model, AIAA Journal 20 pp 33– (1982) · Zbl 0484.76064
[66] Menter, 2-Equation eddy-viscosity turbulence models for engineering applications, AIAA Journal 32 pp 1598– (1994)
[67] Wilcox DC. Turbulence Modelling for CFD (2nd edn). DCW Industries, La Cañada, CA, U.S.A., 1998. ISBN 0-9636051-5-1.
[68] Shih, A new k-{\(\epsilon\)} eddy viscosity model for high-Reynolds-number turbulent flows, Computers and Fluids 24 pp 227– (1995)
[69] Wallin, An explicit algebraic Reynolds-stress model for incompressible and compressible turbulent flows, Journal of Fluid Mechanics 403 pp 89– (2000) · Zbl 0966.76032
[70] Shakib, A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering 89 pp 141– (1991)
[71] Pantakar, Numerical Heat Transfer and Fluid Flow (1980)
[72] Hughes, A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Computer Methods in Applied Mechanics and Engineering 54 pp 223– (1986) · Zbl 0572.76068
[73] Mottura, Factorized implicit upwind methods applied to inviscid flows at high Mach number, AIAA Journal 38 pp 1846– (2000)
[74] Jameson, Solution of the Euler equations for 2-D transonic flow by a multigrid method, Applied Mathematics and Computation 13 pp 327– (1983) · Zbl 0545.76065
[75] Saad, Iterative Methods for Sparce Linear Systems (2003)
[76] Mavriplis, An assessment of linear versus nonlinear multigrid methods for unstructured mesh solvers, Journal of Computational Physics 175 pp 302– (2002) · Zbl 0995.65099
[77] Ni RH. Multigrid convergence acceleration techniques for explicit Euler solvers and applications to Navier-Stokes calculations. Numerical Techniques for Viscous Flow Calculations in Turbomachinery Bladings. No. LS-1986-02, Lecture Series, VKI, 1986.
[78] Leclercq, Characteristic multigrid method application to solve the Euler equations with unstructured and unnested grids, Journal of Computational Physics 104 pp 329– (1993) · Zbl 0788.65097
[79] Gerolymos, Oblique-shock-wave/boundary-layer interaction using near-wall Reynolds-stress models, AIAA Journal 42 pp 1089– (2004)
[80] Gerolymos, Influence of inflow-turbulence in shock-wave/turbulent-boundary-layer interaction computations, AIAA Journal 42 pp 1101– (2004)
[81] Vallet, Reynolds-stress modelling of M=2.25 shock-wave/turbulent-boundary-layer interaction, International Journal for Numerical Methods in Fluids 56 pp 525– (2008) · Zbl 1388.76090
[82] Vallet, Reynolds-stress modelling of 3-D secondary flows with emphasis on turbulent diffusion closure, ASME Journal of Applied Mechanics 74 pp 1142– (2007)
[83] Gessner, The numerical prediction of developing turbulent flow in rectangular ducts, ASME Journal of Fluids Engineering 103 pp 445– (1981)
[84] Benay, Analyse expérimentale de l’ecoulement dans un canal transsonique 3-D, Recherche Aérospatiale 6 pp 399– (1986)
[85] Pot T, Délery JM, Quelin C. Interactions onde-de-choc/couche-limite dans un canal transsonique 3-D. Rap. Tech. 92-7078-AY-116-A, ONERA, 1991.
[86] Settles, Details of a shock-separated turbulent boundary-layer at a compression corner, AIAA Journal 14 pp 1709– (1976)
[87] Dolling, Unsteadiness of the separation shock-wave structure in a supersonic compression ramp flowfield, AIAA Journal 21 pp 1628– (1983)
[88] Settles, Supersonic and hypersonic shock/boundary-layer interaction database, AIAA Journal 32 pp 1377– (1994)
[89] Vallet I. Aérodynamique numérique 3-D instationnaire avec fermeture Bas-Reynolds au second ordre. Doctorat, Université Pierre-et-Marie-Curie, Paris, FRA, 1995.
[90] Gerolymos, Implicit computation of the 3-D compressible Navier-Stokes equations using k-{\(\epsilon\)} turbulence closure, AIAA Journal 34 pp 1321– (1996) · Zbl 0906.76066
[91] Sarkar, The analysis and modelling of dilatational terms in compressible turbulence, Journal of Fluid Mechanics 227 pp 473– (1991) · Zbl 0721.76037
[92] Pope, Turbulent Flows (2000) · Zbl 0966.76002
[93] Gerolymos, Wall-normal-free Reynolds-stress model for rotating flows applied to turbomachinery, AIAA Journal 40 pp 199– (2002)
[94] Gerolymos GA, Vallet I. Low-diffusion approximate Riemann solvers for Reynolds-stress transport. AIAA Computational Fluid Dynamics Conference, Miami, FL, U.S.A., 25-28 June 2007. AIAA Paper 2007-4467, 18.
[95] So, A geometry independent near-wall Reynolds-stress closure, International Journal of Engineering Science 37 pp 33– (1999)
[96] Cahen, Validation of code using turbulence model applied to 3-D transonic channel, AIAA Journal 33 pp 671– (1995)
[97] Caughey, Implicit multigrid computation of unsteady flows past cylinders of square cross-section, Computers and Fluids 30 pp 939– (2001) · Zbl 1051.76043
[98] Venkatakrishnan, Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, Journal of Computational Physics 118 pp 120– (1995) · Zbl 0858.76058
[99] Amaladas, Accuracy assessment of upwind algorithms for steady-state computations, Computers and Fluids 27 pp 941– (1998) · Zbl 0967.76060
[100] Vinokur, An analysis of finite-difference and finite-volume formulations of conservation laws, Journal of Computational Physics 81 pp 1– (1989) · Zbl 0662.76039
[101] Anderson, Comparison of finite-volume flux-vector-splittings for the Euler equations, AIAA Journal 24 pp 1453– (1986)
[102] Anderson, Extension and application of flux-vector-splitting to calculations on dynamic meshes, AIAA Journal 27 pp 673– (1989)
[103] Gerolymos GA, Vallet I. Advances in the numerical computation of complex flows using Reynolds-stress models. AIAA Computational Fluid Dynamics Conference, Miami, FL, U.S.A., 25-28 June 2007. AIAA Paper 2007-3963, 18.
[104] Rogers, Steady and unsteady solutions of the incompressible Navier-Stokes equations, AIAA Journal 29 pp 603– (1991)
[105] Jameson A. Time-dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. AIAA Paper 1991-1596, 1991.
[106] Rumsey, Efficiency sand accuracy of time-accurate turbulent Navier-Stokes computations, Computers and Fluids 25 pp 217– (1996) · Zbl 0881.76067
[107] Dubuc, Solution of the unsteady Euler equations using an implicit dual-time method, AIAA Journal 36 pp 1417– (1998)
[108] Chakravarthy, Euler equations-implicit schemes and boundary conditions, AIAA Journal 21 pp 699– (1983) · Zbl 0517.76014
[109] Schumann, Realizability of Reynolds-stress turbulence models, Physics of Fluids 20 pp 721– (1977) · Zbl 0362.76099
[110] Golub, Matrix Computations pp 150– (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.