×

Prediction of traffic convective instability with spectral analysis of the Aaw-Rascle-Zhang model. (English) Zbl 1374.90093

Summary: This article starts from the classical Aw-Rascle-Zhang (ARZ) model for freeway traffic and develops a spectral analysis of its linearized version. A counterpart to the Froude number in hydrodynamics is defined that enables a classification of the nature of vehicle traffic flow using the explicit solution resulting from the analysis. We prove that our linearization about an equilibrium is stable for congested regimes and unstable otherwise. NGSIM data for congested traffic trajectories is used so as to confront the linearized model’s predictions to actual macroscopic behavior of traffic. The model is shown to achieve good accuracy for speed and flow. In particular, it accounts for the advection of oscillations on boundaries into the interior domain where the PDE under study is solved.

MSC:

90B20 Traffic problems in operations research
93B18 Linearizations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lighthill, M. J.; Whitham, J. B., On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. R. Soc. A, 317-345 (1955) · Zbl 0064.20906
[2] Richards, P. I., Shock waves on the highway, Oper. Res., 4, 1, 42-51 (1956) · Zbl 1414.90094
[3] Greenshields, B. D., A study of traffic capacity, (Highway Research Board Proceedings (1934)), 448-474
[4] Newell, G. F., A simplified theory of kinematic waves in highway traffic. Part II: queueing at freeway bottlenecks, Transp. Res., Part B, Methodol., 27, 7, 289-303 (1993)
[5] Daganzo, C. F., The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory, Transp. Res., Part B, Methodol., 28, 4, 269-287 (1994)
[6] Wang, Y.; Papageorgiou, M., Real-time freeway traffic state estimation based on extended Kalman filter: a general approach, Transp. Res., Part B, Methodol., 39, 2, 141-167 (2005)
[7] Papageorgiou, M.; Blosseville, J.-M.; Hadj-Salem, H., Macroscopic modelling of traffic flow on the Boulevard Peripherique in Paris, Transp. Res., Part B, Methodol., 23, 1, 29-47 (1989)
[8] Flynn, M. R.; Kasimov, A. R.; Nave, J. C.; Rosales, R. R.; Seibold, B., Self-sustained nonlinear waves in traffic flow, Phys. Rev. E, 79, 056113 (2009)
[9] Treiber, M.; Kesting, A., Traffic Flow Dynamics: Data, Models and Simulation (2013), Springer
[10] Garavello, M.; Piccoli, B., Traffic Flow on Networks: Conservation Laws Models, AIMS Series on Applied Mathematics (2006), American Institute of Mathematical Sciences
[11] Godunov, S. K., A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations, Mat. Sb., 47, 271-306 (1969) · Zbl 0171.46204
[12] Osher, S., Riemann solvers, the entropy condition, and difference, SIAM J. Numer. Anal., 21, 2, 217-235 (1984) · Zbl 0592.65069
[13] Daganzo, C. F., The cell transmission model, part II: network traffic, Transp. Res., Part B, Methodol., 29, 2, 79-93 (1995)
[14] Daganzo, C. F., Requiem for second-order fluid approximations of traffic flow, Transp. Res., Part B, Methodol., 29, 4, 277-286 (1995)
[15] Helbing, D., Traffic and related self-driven many-particle systems, Rev. Mod. Phys., 73, 4, 1067-1141 (2001)
[16] Sugiyama, Y.; Fukui, M.; Kikuchi, M.; Hasebe, K.; Nakayama, A.; Nishinari, K.; Tadaki, S.; Yukawa, S., Traffic jams without bottlenecks, experimental evidence for the physical mechanism of the formation of a jam, New J. Phys., 10, 033001 (2008)
[17] Flynn, M. R.; Kasimov, A. R.; Nave, J.-C.; Rosales, R. R.; Seibold, B., On “jamitons,” self-sustained nonlinear traffic waves
[18] Seibold, B.; Flynn, M. R.; Kasimov, A. R.; Rosales, R. R., Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models · Zbl 1277.35103
[19] Payne, H. J., Models of Freeway Traffic and Control, Simulation Councils, Incorporated (1971)
[20] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley · Zbl 0373.76001
[21] Bellomo, N.; Dogbe, C., On the modeling of traffic and crowds: a survey of models, speculations, and perspectives, SIAM Rev., 53, 3, 409-463 (2015) · Zbl 1231.90123
[22] Newell, G. F., Nonlinear effects in the dynamics of car following, Oper. Res., 9, 2, 209-229 (1961) · Zbl 0211.52301
[23] Zhang, H. M., A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res., Part B, Methodol., 36, 275-290 (2002)
[24] Zhang, H. M., A theory of nonequilibrium traffic flow, Transp. Res., Part B, Methodol., 32, 7, 485-498 (1998)
[25] Aw, A.; Rascle, M., Resurrection of second order models of traffic flow, SIAM J. Appl. Math., 60, 3, 916-938 (2000) · Zbl 0957.35086
[26] Rascle, M., An improved macroscopic model of traffic flow: derivation and links with the Lighthill-Whitham model, Math. Comput. Model., 35, 581-590 (2002) · Zbl 0994.90023
[27] Lebacque, J.-P.; Mammar, S.; Haj-Salem, H., The Aw-Rascle and Zhang’s model: vacuum problems, existence and regularity of the solutions of the Riemann problem, Transp. Res., Part B, Methodol., 41, 7, 710-721 (2007)
[28] Moutari, S.; Rascle, M., A hybrid Lagrangian model based on the Aw-Rascle traffic flow model, SIAM J. Appl. Math., 68, 2, 413-436 (2007) · Zbl 1148.35049
[29] Garavello, M.; Piccoli, B., Traffic flow on a road network using the Aw-Rascle model, Commun. Partial Differ. Equ., 31, 2, 243-275 (2006) · Zbl 1090.90032
[30] Mammar, S.; Lebacque, J.-P.; Salem, H. H., Riemann problem resolution and Godunov scheme for the Aw-Rascle-Zhang model, Transp. Sci., 43, 4, 531-545 (2009)
[31] Delis, A.; Nikolos, I.; Papageorgiou, M., High-resolution numerical relaxation approximations to second-order macroscopic traffic flow models, Transp. Res., Part C, Emerg. Technol., 44, 318-349 (2014)
[32] Gupta, A. K.; Katiyar, V. K., A new anisotropic continuum model for traffic flow, Physica A, 368, 2, 551-559 (2006)
[33] Gupta, A. K.; Katiyar, V. K., Analyses of shock waves and jams in traffic flow, J. Phys. A, Math. Gen., 38, 19, 4069 (2005) · Zbl 1086.90013
[34] Gupta, A. K.; Katiyar, V. K., Phase transition of traffic states with on-ramp, Physica A, 371, 2, 674-682 (2006)
[35] Gupta, A. K.; Dhiman, I., Phase diagram of a continuum traffic flow model with a static bottleneck, Nonlinear Dyn., 79, 1, 663-671 (2015)
[36] Gupta, A. K.; Dhiman, I., Analyses of a continuum traffic flow model for a nonlane-based system, Int. J. Mod. Phys. C, 25, 10, 1450045 (2014)
[37] Gupta, A. K., A section approach to a traffic flow model on networks, Int. J. Mod. Phys. C, 24, 05, 1350018 (2013)
[38] Jin, I. G.; Orosz, G., Dynamics of connected vehicle systems with delayed acceleration feedback, Transp. Res., Part C, Emerg. Technol., 46, 46-64 (2014)
[39] Degond, P.; Delitala, M., Modelling and simulation of vehicular traffic jam formation, Kinet. Relat. Models, 1, 2, 279-293 (2008) · Zbl 1153.90356
[40] Bellouquid, A.; De Angelis, E.; Fermo, L., Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach, Math. Models Methods Appl. Sci., 22, 1140003 (2012) · Zbl 1243.35157
[41] Colombo, R. M., Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63, 2, 708-721 (2003) · Zbl 1037.35043
[42] Treiber, M.; Kesting, A.; Helbing, D., Three-phase traffic theory and two-phase models with a fundamental diagram in the light of empirical stylized facts, Transp. Res., Part B, Methodol., 44, 8, 983-1000 (2010)
[43] Blandin, S.; Work, D.; Goatin, P.; Piccoli, B.; Bayen, A., A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71, 1, 107-127 (2011) · Zbl 1217.35116
[44] Greenberg, J. M., Congestion redux, SIAM J. Appl. Math., 64, 1175-1185 (2004) · Zbl 1053.35087
[45] Treiber, M.; Hennecke, A.; Helbing, D., Congested traffic states in empirical observations and microscopic simulations, Phys. Rev. E, 62, 2, 1805-1824 (2000) · Zbl 0996.90032
[46] Chen, D.; Laval, J.; Zheng, Z.; Ahn, S., A behavioral car-following model that captures traffic oscillations, Transp. Res., Part B, Methodol., 46, 6, 744-761 (2012)
[47] Ge, H.-x.; Meng, X.-p.; Ma, J.; Lo, S.-m., An improved car-following model considering influence of other factors on traffic jam, Phys. Lett. A, 377, 12, 9-12 (2012) · Zbl 1396.90019
[48] Mauch, M.; Cassidy, M. J., Freeway traffic oscillations: observations and predictions, (15th Int. Symp. on Transportation and Traffic Theory (2002), Elsevier), 653-674
[49] Coifman, B.; Krishnamurthy, S.; Wang, X., Lane-change maneuvers consuming freeway capacity, (Traffic and Granular Flow 03 (2005), Springer: Springer Berlin, Heidelberg), 3-14
[50] Ahn, S.; Cassidy, M. J., Freeway traffic oscillations and vehicle lane-change maneuvers, (17th Int. Symp. on Transportation and Traffic Theory (2007), Elsevier), 691-710
[51] Zheng, Z.; Ahn, S.; Chen, D.; Laval, J., Freeway traffic oscillations: microscopic analysis of formations and propagations using wavelet transform, Transp. Res., Part B, Methodol., 45, 9, 1378-1388 (2011)
[52] Tchrakian, T.; Zhuk, S., A macroscopic traffic data-assimilation framework based on the Fourier-Galerkin method and minimax estimation, IEEE Trans. Intell. Transp. Syst., 16, 1, 452-464 (2014)
[53] Litrico, X.; Fromion, V., Modeling and Control of Hydrosystems (2009), Springer
[54] Litrico, X.; Fromion, V., H-infinity control of an irrigation canal pool with a mixed control politics, IEEE Trans. Control Syst. Technol., 14, 1, 99-111 (2006)
[55] Lamare, P.-O.; Bekiaris-Liberis, N., Control of \(2 \times 2\) linear hyperbolic systems: backstepping-based trajectory generation and PI-based tracking, Syst. Control Lett. (2015), provisionally accepted · Zbl 1325.93049
[56] Treiber, M.; Kesting, A., Evidence of convective instability in congested traffic flow: a systematic empirical and theoretical investigation, Transp. Res., Part B, Methodol., 45, 9, 1362-1377 (2011)
[57] Ward, J. A.; Wilson, R. E., Criteria for convective versus absolute string instability in car-following models, Proc. R. Soc. A., Math. Phys. Eng. Sci., 467, 2185-2208 (2011) · Zbl 1228.90025
[58] Gupta, A. K.; Sharma, S., Nonlinear analysis of traffic jams in an anisotropic continuum model, Chin. Phys. B, 19, 11, 110503 (2010)
[59] Gupta, A. K.; Sharma, S., Analysis of the wave properties of a new two-lane continuum model with the coupling effect, Chin. Phys. B, 21, 1, 015201 (2012)
[60] Fan, S.; Herty, M.; Seibold, B., Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Netw. Heterog. Media, 9, 2, 239-268 (2014) · Zbl 1304.35700
[61] Jin, W.-L., On the equivalence between continuum and car-following models of traffic flow (2014)
[62] Sturm, T. W., Open Channel Hydraulics (2001), McGraw-Hill
[63] Hofleitner, A.; Claudel, C.; Bayen, A., Reconstruction of boundary conditions from internal conditions using viability theory, (American Control Conference (2012), IEEE), 640-645
[64] Kerner, B. S.; Rehborn, H., Experimental properties of phase transitions in traffic flow, Phys. Rev. Lett., 79, 4030-4033 (1997)
[65] Edie, L. C., Discussion of traffic stream measurements and definitions, (Proc. 2nd Int. Symp. on the Theory of Traffic Flow (1963)), 139-154
[66] Piccoli, B.; Han, K.; Friesz, T. L.; Yao, T.; Tang, J., Second-order models and traffic data from mobile sensors, Transp. Res., Part C, Emerg. Technol., 52, 32-56 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.