×

An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. (English) Zbl 1325.76113

Summary: We study the Rayleigh-Stokes problem for a generalized second-grade fluid which involves a Riemann-Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data \(v\), including \(v\in L^2(\Omega )\). A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76A05 Non-Newtonian fluids
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Chen, C.-M., Liu, F., Anh, V.: Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl. Math. Comput. 204(1), 340-351 (2008) · Zbl 1153.76010 · doi:10.1016/j.amc.2008.06.052
[2] Chen, C.-M., Liu, F., Anh, V.: A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. J. Comput. Appl. Math. 223(2), 777-789 (2009) · Zbl 1153.76049 · doi:10.1016/j.cam.2008.03.001
[3] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002) · Zbl 0999.65129 · doi:10.1137/1.9780898719208
[4] Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673-696 (2006) · Zbl 1090.65147 · doi:10.1090/S0025-5718-06-01788-1
[5] Fetecau, C., Jamil, M., Fetecau, C., Vieru, D.: The Rayleigh-Stokes problem for an edge in a generalized Oldroyd-B fluid. Z. Angew. Math. Phys. 60(5), 921-933 (2009) · Zbl 1181.76021 · doi:10.1007/s00033-008-8055-5
[6] Fujita, H., Suzuki, T.: Evolution problems. In: Handbook of Numerical Analysis, vol. II, Handb. Numer. Anal., II, pp. 789-928. North-Holland, Amsterdam (1991) · Zbl 0875.65084
[7] Girault, V., Saadouni, M.: On a time-dependent grade-two fluid model in two dimensions. Comput. Math. Appl. 53(3-4), 347-360 (2007) · Zbl 1122.76009 · doi:10.1016/j.camwa.2006.02.048
[8] Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Galerkin FEM for fractional order parabolic equations with initial data in \[H^{-s}, 0\le s \le 1H\]-s,0≤s≤1. LNCS 8236. In: Proc. 5th Conf. Numer. Anal. Appl. (June 15-20, 2012). Springer, Berlin, pp. 24-37 (2013) · Zbl 1352.65351
[9] Jin, B., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of a finite element method for the space-fractional parabolic equation. SIAM J. Numer. Anal. 52(5), 2272-2294 (2014) · Zbl 1310.65126 · doi:10.1137/13093933X
[10] Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51(1), 445-466 (2013) · Zbl 1268.65126 · doi:10.1137/120873984
[11] Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[12] Lin, Y., Jiang, W.: Numerical method for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Numer. Methods Partial Differ. Equ. 27(6), 1599-1609 (2011) · Zbl 1426.76549 · doi:10.1002/num.20598
[13] Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129-145 (1988) · Zbl 0637.65016 · doi:10.1007/BF01398686
[14] Lubich, C.: Convolution quadrature revisited. BIT 44(3), 503-514 (2004) · Zbl 1083.65123 · doi:10.1023/B:BITN.0000046813.23911.2d
[15] Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1-17 (1996) · Zbl 0852.65138 · doi:10.1090/S0025-5718-96-00677-1
[16] Mainardi, F., Gorenflo, R.: Time-fractional derivatives in relaxation processes: a tutorial survey. Fract. Calc. Appl. Anal. 10(3), 269-308 (2007) · Zbl 1157.26304
[17] McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52(2), 123-138 (2010) · Zbl 1228.35266 · doi:10.1017/S1446181111000617
[18] McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algor. 52(1), 69-88 (2009) · Zbl 1177.65194 · doi:10.1007/s11075-008-9258-8
[19] McLean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation. IMA J. Numer. Anal. 30(1), 208-230 (2010) · Zbl 1416.65381 · doi:10.1093/imanum/drp004
[20] McLean, W., Thomée, V.: Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integr. Equ. Appl. 22(1), 57-94 (2010) · Zbl 1195.65122 · doi:10.1216/JIE-2010-22-1-57
[21] Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Compact finite difference scheme and RBF meshless approach for solving 2d Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput. Methods Appl. Mech. Eng. 264, 163-177 (2013) · Zbl 1286.76014 · doi:10.1016/j.cma.2013.05.012
[22] Mustapha, K., McLean, W.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algor. 56, 159-184 (2011) · Zbl 0946.35115 · doi:10.1007/s11075-010-9379-8
[23] Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491-515 (2013) · Zbl 1267.26005 · doi:10.1137/120880719
[24] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[25] Prüss, J.: Evolutionary Integral Equations and Applications, Monographs in Mathematics, vol. 87. Birkhäuser Verlag, Basel (1993) · Zbl 0793.45014 · doi:10.1007/978-3-0348-8570-6
[26] Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426-447 (2011) · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[27] Sanz-Serna, J.M.: A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25(2), 319-327 (1988) · Zbl 0643.65098 · doi:10.1137/0725022
[28] Shen, F., Tan, W., Zhao, Y., Masuoka, T.: The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 7(5), 1072-1080 (2006) · Zbl 1113.76016 · doi:10.1016/j.nonrwa.2005.09.007
[29] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, vol. 25, 2nd edn. Springer, Berlin (2006) · Zbl 1105.65102
[30] Widder, D.V.: The Laplace Transform. Princeton Mathematical Series, vol. 6. Princeton University Press, Princeton (1941) · Zbl 0063.08245
[31] Wu, C.: Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Appl. Numer. Math. 59(10), 2571-2583 (2009) · Zbl 1167.76028 · doi:10.1016/j.apnum.2009.05.009
[32] Zhao, C., Yang, C.: Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Appl. Math. Comput. 211(2), 502-509 (2009) · Zbl 1162.76007 · doi:10.1016/j.amc.2009.01.068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.