# zbMATH — the first resource for mathematics

A genetic algorithm-based model for solving multi-period supplier selection problem with assembly sequence. (English) Zbl 1197.90126
Summary: Under fierce market competition, only products that can meet market demands timely and are competitive can enjoy advantages in the market. Production planning is important in enhancing product competitiveness by effectively reducing both production cost and time. To complete the planning task, a better assembly sequence that includes selecting suitable part suppliers and satisfying the multi-period demands should be designed. In this paper, a mathematical model is presented for dealing with this planning problem, and its objective is to minimise the value of integrated criteria. A hybrid heuristic algorithm, which involves guided genetic algorithm combined with Pareto genetic algorithm, known as Guided-Pareto genetic algorithm (Gu-PGA), is developed for solving the addressed problem. Finally, experiments are conducted to validate the proposed algorithm. The results demonstrate that the Gu-PGA is more effective in solving the multi-period supplier selection problem.

##### MSC:
 90B30 Production models
Full Text:
##### References:
 [1] DOI: 10.1016/0377-2217(95)00315-0 · Zbl 0916.90084 · doi:10.1016/0377-2217(95)00315-0 [2] DOI: 10.1016/j.omega.2006.05.007 · doi:10.1016/j.omega.2006.05.007 [3] DOI: 10.1109/ETFA.1995.496663 · doi:10.1109/ETFA.1995.496663 [4] DOI: 10.1080/00207540701663516 · Zbl 1163.90481 · doi:10.1080/00207540701663516 [5] DOI: 10.1016/j.asoc.2005.01.002 · Zbl 05391340 · doi:10.1016/j.asoc.2005.01.002 [6] Che ZH, International Journal of Production Research (2008) [7] DOI: 10.1016/j.cie.2007.12.005 · doi:10.1016/j.cie.2007.12.005 [8] DOI: 10.1016/S0925-5273(03)00187-7 · doi:10.1016/S0925-5273(03)00187-7 [9] DOI: 10.1016/j.ejor.2007.08.016 · Zbl 1149.90071 · doi:10.1016/j.ejor.2007.08.016 [10] DOI: 10.1109/JRA.1987.1087132 · doi:10.1109/JRA.1987.1087132 [11] Dickson GW, Journal of Purchasing 2 pp 5– (1966) [12] Fan J, IEEE international conference on systems, man and cybernetics 4 pp 3494– (2004) [13] Fei Y, Hoisting and Conveying Machinery 9 pp 13– (2006) [14] DOI: 10.1115/1.538897 · doi:10.1115/1.538897 [15] Gen M, Genetic algorithms and engineering design (1997) [16] DOI: 10.1109/TAP.2004.842404 · doi:10.1109/TAP.2004.842404 [17] DOI: 10.1016/j.ijpe.2005.05.008 · doi:10.1016/j.ijpe.2005.05.008 [18] DOI: 10.1016/j.ijpe.2006.03.001 · doi:10.1016/j.ijpe.2006.03.001 [19] Pareto V, Cours d’economic politique (1896) [20] DOI: 10.1016/S0952-1976(01)00036-7 · doi:10.1016/S0952-1976(01)00036-7 [21] Sha DY, International Journal of Advanced Manufacturing Technology 25 pp 739– (2005) [22] DOI: 10.1057/palgrave.jors.2601949 · Zbl 1121.90047 · doi:10.1057/palgrave.jors.2601949 [23] DOI: 10.1016/j.cie.2006.04.002 · doi:10.1016/j.cie.2006.04.002 [24] DOI: 10.1080/00207540500117995 · doi:10.1080/00207540500117995 [25] DOI: 10.1016/S0736-5845(02)00029-7 · doi:10.1016/S0736-5845(02)00029-7 [26] DOI: 10.1023/A:1008971030395 · doi:10.1023/A:1008971030395 [27] DOI: 10.1080/0020754042000203894 · doi:10.1080/0020754042000203894 [28] DOI: 10.1080/00207540500270513 · doi:10.1080/00207540500270513 [29] DOI: 10.1016/j.eswa.2006.05.025 · doi:10.1016/j.eswa.2006.05.025 [30] Udeshi, T and Tsui, K. Assembly sequence planning for automated micro assembly.Proceedings of the 6th IEEE international symposium on assembly and task planning:From nano to macro assembly and manufacturing. 2005, Montreal. 19–21 July. pp.98–105. Canada: IEEE Press. [31] DOI: 10.1016/j.omega.2006.12.004 · doi:10.1016/j.omega.2006.12.004 [32] DOI: 10.1016/j.cor.2006.01.009 · Zbl 1127.90064 · doi:10.1016/j.cor.2006.01.009 [33] DOI: 10.1016/j.eswa.2006.02.015 · doi:10.1016/j.eswa.2006.02.015 [34] DOI: 10.1080/00207540600999144 · Zbl 1160.90459 · doi:10.1080/00207540600999144 [35] DOI: 10.1016/0377-2217(91)90033-R · Zbl 1403.90061 · doi:10.1016/0377-2217(91)90033-R [36] DOI: 10.1080/00207540600675801 · Zbl 1160.90463 · doi:10.1080/00207540600675801 [37] Wu QH, IEEE International Conference on Evolutionary Computation 13 pp 77– (1997) [38] DOI: 10.1016/S0010-4485(01)00174-9 · Zbl 05860958 · doi:10.1016/S0010-4485(01)00174-9 [39] Zhou SQ, Machine Design and Research 22 pp 10– (2006) [40] Zhu XJ, Journal of Shanghai Jiaotong University 34 pp 411– (2000) [41] Zitzler E, Evolutionary algorithms for multi-objective optimisation: methods and applications. (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.