×

zbMATH — the first resource for mathematics

Formulation of the relativistic heat equation and the relativistic kinetic Fokker-Planck equations using GENERIC. (English) Zbl 1400.82190
Summary: In this paper, we formulate the relativistic heat equation and the relativistic kinetic Fokker-Planck equations into the GENERIC (General Equation for Non-Equilibrium Reversible-Irreversible Coupling) framework. We also show that the relativistic Maxwellian distribution is the stationary solution of the latter. The GENERIC formulation provides an alternative justification that the two equations are meaningful relativistic generalizations of their non-relativistic counterparts.
MSC:
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
Software:
GENERIC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rosenau, P., Tempered diffusion: A transport process with propagating fronts and inertial delay, Phys. Rev. A, 46, R7371-R7374 (1992)
[2] Brenier, Y., Extended Monge-Kantorovich theory, (Optimal Transportation and Applications. Optimal Transportation and Applications, Lecture Notes in Mathematics, vol. 1813 (2003), Springer: Springer Berlin, Heidelberg), 91-121 · Zbl 1064.49036
[3] Andreu, F.; Caselles, V.; Mazón, J. M.; Moll, S., Finite propagation speed for limited flux diffusion equations, Arch. Ration. Mech. Anal., 182, 2, 269-297 (2006) · Zbl 1142.35455
[4] Caselles, V., Convergence of the ‘relativistic’ heat equation to the heat equation as \(c \to \infty \), Publ. Mat., 51, 1, 121-142 (2007) · Zbl 1140.35466
[5] Debbasch, F.; Mallick, K.; Rivet, J. P., Relativistic Ornstein-Uhlenbeck process, J. Stat. Phys., 88, 3-4, 945-966 (1997) · Zbl 0939.82015
[6] Dunkel, J.; Hänggi, P., Theory of relativistic brownian motion: The \((1 + 1)\)-dimensional case, Phys. Rev. E, 71, 016124 (2005)
[7] Dunkel, J.; Hänggi, P., Theory of relativistic brownian motion: The \((1 + 3)\)-dimensional case, Phys. Rev. E, 72, 036106 (2005)
[8] Franchi, J.; Le Jan, Y., Relativistic diffusions and Schwarzschild geometry, Comm. Pure Appl. Math., 60, 2, 187-251 (2007) · Zbl 1130.83006
[9] Chevalier, C.; Debbasch, F., Fluctuation-dissipation theorems in an expanding universe, J. Math. Phys., 48, 2, 023304 (2007), 12 · Zbl 1121.82029
[10] Chevalier, C.; Debbasch, F., Relativistic diffusions: a unifying approach, J. Math. Phys., 49, 4, 043303 (2008), 19 · Zbl 1152.81373
[11] Debbasch, F.; Chevalier, C., Relativistic stochastic processes, AIP Conf. Proc., 913, 42-48 (2007) · Zbl 1136.82356
[12] Dunkel, J.; Hänggi, P., Relativistic Brownian motion, Phys. Rep., 471, 1, 1-73 (2009)
[13] Haba, Z., Relativistic diffusion, Phys. Rev. E, 79, 021128 (2009)
[14] Haba, Z., Relativistic diffusion of elementary particles with spin, J. Phys., A42, 445401 (2009) · Zbl 1175.81141
[15] Haba, Z., Energy and entropy of relativistic diffusing particles, Modern Phys. Lett. A, 25, 31, 2683-2695 (2010) · Zbl 1202.83067
[16] Alcántara, J. A.; Calogero, S., On a relativistic Fokker-Planck equation in kinetic theory, Kinet. Relat. Models, 4, 2, 401-426 (2011) · Zbl 1219.35312
[17] Alcántara, J. A.; Calogero, S., Newtonian limit and trend to equilibrium for the relativistic Fokker-Planck equation, J. Math. Phys., 54, 3, 031502 (2013) · Zbl 1288.82048
[18] Chevalier, C.; Debbasch, F., AIP Conf. Proc., 913 (2007)
[19] Dunkel, J.; Hänggi, P., Relativistic Brownian motion, Phys. Rep., 471, 1-73 (2009)
[20] Grmela, M.; Öttinger, H. C., Dynamics and thermodynamics of complex fluids. I. Development of a general formalism, Phys. Rev. E (3), 56, 6, 6620-6632 (1997)
[21] Öttinger, H. C.; Grmela, M., Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism, Phys. Rev. E (3), 56, 6, 6633-6655 (1997)
[22] Hütter, M.; Tervoort, T. A., Finite anisotropic elasticity and material frame indifference from a nonequilibrium thermodynamics perspective, J. Non-Newton. Fluid Mech., 152, 45-52 (2008) · Zbl 1138.74007
[23] Hütter, M.; Tervoort, T. A., Thermodynamic considerations on non-isothermal finite anisotropic elasto-viscoplasticity, J. Non-Newton. Fluid Mech., 152, 53-65 (2008) · Zbl 1210.74033
[24] Mielke, A., Formulation of thermoelastic dissipative material behavior using generic, Contin. Mech. Thermodyn., 23, 233-256 (2011) · Zbl 1272.74137
[25] Füreder, I.; Ilg, P., Nonequilibrium thermodynamics of the soft glassy rheology model, Phys. Rev. E, 88, 042134 (2013)
[26] Öttinger, H. C., Irreversible dynamics, onsager-casimir symmetry, and an application to turbulence, Phys. Rev. E, 90, 042121 (2014)
[28] Öttinger, H. C., On the structural compatibility of a general formalism for nonequilibrium dynamics with special relativity, Physica A, 259, 1-2, 24-42 (1998)
[29] Öttinger, H. C., Relativistic and nonrelativistic description of fluids with anisotropic heat conduction, Physica A, 254, 433-450 (1998)
[30] Duong, M. H.; Peletier, M. A.; Zimmer, J., Conservative-dissipative approximation schemes for a generalized Kramers equation, Math. Methods Appl. Sci., 37, 16, 2517-2540 (2014) · Zbl 1370.35165
[31] Duong, M. H.; Peletier, M. A.; Zimmer, J., GENERIC formalism of a Vlasov-Fokker-Planck equation and connection to large-deviation principles, Nonlinearity, 26, 11, 2951-2971 (2013) · Zbl 1288.60029
[32] Duong, M. H., Large deviation and variational approaches to generalized gradient flows (2014), Eindhoven University of Technology, (Ph.D. thesis)
[33] Adams, S.; Dirr, N.; Peletier, M. A.; Zimmer, J., Large deviations and gradient flows, Phil. Trans. R. Soc. A, 371, 2005 (2013) · Zbl 1292.82023
[34] Öttinger, H. C., Beyond Equilibrium Thermodynamics (2005), Wiley-Interscience
[35] Jordan, R.; Kinderlehrer, D.; Otto, F., The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1, 1-17 (1998) · Zbl 0915.35120
[36] Ambrosio, L.; Gigli, N.; Savaré, G., (Gradient Flows in Metric Spaces and in the Space of Probability Measures. Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics (2008), ETH Zürich. Birkhäuser: ETH Zürich. Birkhäuser Basel) · Zbl 1145.35001
[37] Villani, Cédric, (Topics in Optimal Transportation. Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58 (2003), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1106.90001
[38] McCann, R. J.; Puel, M., Constructing a relativistic heat flow by transport time steps, Ann. Inst. H. Poincare (C) Non Linear Anal., 26, 6, 2539-2580 (2009) · Zbl 1181.80001
[39] Sandier, E.; Serfaty, S., Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57, 12, 1627-1672 (2004) · Zbl 1065.49011
[40] Serfaty, S., Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., 31, 4, 1427-1451 (2011) · Zbl 1239.35015
[41] Arnrich, S.; Mielke, A.; Peletier, M. A.; Savaré, G.; Veneroni, M., Passing to the limit in a Wasserstein gradient flow: From diffusion to reaction, Calc. Var. Partial Differential Equations, 44, 3-4, 419-454 (2012) · Zbl 1270.35055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.