×

zbMATH — the first resource for mathematics

Space-time philosophy reconstructed via massive Nordström scalar gravities? Laws vs. geometry, conventionality, and underdetermination. (English) Zbl 1331.83089
Summary: What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a “graviton mass term” for gravity, which is algebraic in the potential. Unlike Nordströms “massless” theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einsteins principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the ‘true’ geometry, one might wonder, in line with Poincarés modal conventionality argument? Infinitely many theories exhibit this bimetric ‘geometry,’ all with the total stress-energys trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers-Pirani-Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities – indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einsteins equations along the lines of Einsteins newly re-appreciated “physical strategy” and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz found in 1939). The Putnam-Grünbaum debate on conventionality is revisited with an emphasis on the broad modal scope of conventionalist views. Massive scalar gravity thus contributes to a historically plausible rational reconstruction of much of 20th-21st century space-time philosophy in the light of particle physics. An appendix reconsiders the Malament-Weatherall-Manchak conformal restriction of conventionality and constructs the ‘universal force’ influencing the causal structure.
Subsequent works will discuss how massive gravity could have provided a template for a more Kant-friendly space-time theory that would have blocked Moritz Schlicks supposed refutation of synthetic a priori knowledge, and how Einsteins false analogy between the Neumann-Seeliger-Einstein modification of Newtonian gravity and the cosmological constant \(\Lambda\) generated lasting confusion that obscured massive gravity as a conceptual possibility.

MSC:
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83F05 Relativistic cosmology
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
53A30 Conformal differential geometry (MSC2010)
53Z05 Applications of differential geometry to physics
00A79 Physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akrami, Y.; Koivisto, T. S.; Solomon, A. R., The nature of spacetime in bigravitytwo metrics or none?, General Relativity and Gravitation, 47, 1, 1838, (2015) · Zbl 1329.83143
[2] Alcántara Félix, J. A.; Calogero, S.; Pankavich, S., Spatially homogeneous solutions of the Vlasov-Nordström-Fokker-Planck system, Journal of Differential Equations, 257, 3700-3729, (2014), arxiv:1403.3641v2[math-ph] · Zbl 1303.35113
[3] Anderson, J. L., Principles of relativity physics, (1967), Academic New York
[4] Anderson, J. L.; Finkelstein, D., Cosmological constant and fundamental length, American Journal of Physics, 39, 901-904, (1971)
[5] Bargmann, V.; Wigner, E. P., Group theoretical discussion of relativistic wave equations, Proceedings of the National Academy of Sciences of the United States of America, 34, 211-223, (1948) · Zbl 0030.42306
[6] Bass, L.; Schrödinger, E., Must the photon mass be zero?, Proceedings of the Royal Society of London A, 232, 1-6, (1955) · Zbl 0065.21903
[7] Bateman, H., The conformal transformations of a space of four dimensions and their applications to geometrical optics, Proceedings of the London Mathematical Society, 7, 70-89, (1909) · JFM 40.0920.01
[8] Bateman, H., The transformation of the electrodynamical equations, Proceeding of the London Mathematical Society, 8, 223-264, (1910) · JFM 41.0942.03
[9] Belinfante, F. J., The interaction representation of the proca field, Physical Review, 76, 66-80, (1949) · Zbl 0033.32601
[10] Bell, J. L. & Korté, H. (2011). Hermann Weyl. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Spring 2011 edition. URL 〈http://plato.stanford.edu/archives/spr2011/entries/weyl/〉.
[11] Ben-Menahem, Y., Conventionpoincaré and some of his critics, British Journal for the Philosophy of Science, 52, 471-513, (2001) · Zbl 1044.00003
[12] Ben-Menahem, Y., Conventionalism, (2006), Cambridge University Press Cambridge
[13] Bergmann, O., Scalar field theory as a theory of gravitation. I, American Journal of Physics, 24, 38-42, (1956) · Zbl 0074.43902
[14] Bilenky, S. (2010). Introduction to the physics of massive and mixed neutrinos, Lecture notes in physics (Vol. 817). Berlin: Springer. · Zbl 1206.81005
[15] Bilyalov, R. F., Spinors on Riemannian manifolds, Russian Mathematics (Iz. VUZ), 46, 11, 6-23, (2002) · Zbl 1054.53041
[16] Blanchet, L., A class of nonmetric couplings to gravity, Physical Review Letters, 69, 559-561, (1992) · Zbl 0968.83503
[17] Boulware, D. G., Renormalizeability of massive non-abelian gauge fieldsa functional integral approach, Annals of Physics, 56, 140-171, (1970)
[18] Boulware, D. G.; Deser, S., Can gravitation have a finite range?, Physical Review D, 6, 3368-3382, (1972)
[19] Boulware, D. G.; Gilbert, W., Connection between gauge invariance and mass, Physical Review, 126, 1563-1567, (1962)
[20] Brans, C.; Dicke, R. H., Mach׳s principle and a relativistic theory of gravitation, Physical Review, 124, 925-935, (1961) · Zbl 0103.21402
[21] Branson, T. (2005). Conformal structure and spin geometry. In J. -P. Bourguignon, T. Branson, A. Chamseddine, O. Hijazi, R. J. Stanton (Eds.), Dirac operators: Yesterday and today: Proceedings of the summer school and workshop, CAMS-AUB (pp. 163-191), Lebanon, August 27-September 7, 2001. Somerville, Massachusetts: International Press. · Zbl 1109.53051
[22] Brink, L., A non-geometric approach to 11-dimensional supergravity, (Liu, J. T.; Duff, M. J.; Stelle, K. S.; Woodard, R. P., DeserFestA celebration of the life and works of Stanley Deser, (2006), World Scientific Hackensack, New Jersey), 40-54 · Zbl 1125.83013
[23] Brinkmann, H. W. (1923). On Riemann spaces conformal to Euclidean space. Proceedings of the National Academy of Sciences of the United States of America, 9,1-3. · JFM 49.0547.03
[24] Brown, H. R., Physical relativityspace-time structure from a dynamical perspective, (2005), Oxford University Press New York
[25] Brown, H. R. (2009). The role of rods and clocks in general relativity and the meaning of the metric field. In D. E. Rowe (Ed.), Beyond Einstein: Essays on geometry, gravitation, and cosmology, Einstein studies (Vol. 13). Boston: Birkhäuser, in press. arxiv:0911.4440v1[gr-qc].
[26] Brown, H. R.; Pooley, O., Minkowski space-timea glorious non-entity, (Dieks, D., The ontology of spacetime, (2006), Elsevier Amsterdam)
[27] Butterfield, J. N., Reconsidering relativistic causality, International Studies in the Philosophy of Science, 21, 295-328, (2007), arxiv:0708.2189[quant-ph] · Zbl 1130.83300
[28] Calderbank, D. M.J.; Pedersen, H., Einstein-Weyl geometry, (LeBrun, C.; Wang, M., Essays on Einstein manifolds, surveys in differential geometry VI, (1999), International Press Cambridge, Mass), 387-423 · Zbl 0996.53030
[29] Callan, C. G.; Coleman, S.; Jackiw, R., A new improved energy-momentum tensor, Annals of Physics, 59, 42-73, (1970) · Zbl 1092.83502
[30] Calogero, S., Spherically symmetric steady states of galactic dynamics in scalar gravity, Classical and Quantum Gravity, 20, 1729-1742, (2003), math-ph/0301031 · Zbl 1030.83018
[31] Calogero, S.; Rein, G., Global weak solutions to the Nordström-Vlasov system, Journal of Differential Equations, 204, 323-338, (2004) · Zbl 1060.35027
[32] Coleman, R.; Korté, H., Jet bundles and path structures, Journal of Mathematical Physics, 21, 1340-1351, (1980) · Zbl 0471.58003
[33] Coleman, R.; Korté, H., Hermann Weylmathematician, physicist, philosopher, (Scholz, E., Hermann Weyl׳s Raum-Zeit-Materie and a general introduction to his scientific work, (2001), Birkhäuser Basel), 159-386
[34] Coleman, R. A. & Korté, H. (1982). The status and meaning of the laws of inertia. PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, One: Contributed Papers: 257-274.
[35] Coleman, R. A.; Korté, H., Constraints on the nature of inertial motion arising from the universality of free fall and the conformal causal structure of spacetime, Journal of Mathematical Physics, 25, 3513-3526, (1984) · Zbl 0555.53041
[36] Coleman, R. A.; Korté, H., Harmonic analysis of directing fields, Journal of Mathematical Physics, 31, 127-130, (1990) · Zbl 0721.53065
[37] Coleman, R. A.; Korté, H., Why fundamental structures are first or second order, Journal of Mathematical Physics, 35, 1803-1807, (1994) · Zbl 0802.53008
[38] Coleman, R. A.; Korté, H., A new semantics for the epistemology of geometry imodeling spacetime structure, Erkenntnis, 42, 141-160, (1995)
[39] Coleman, R. A.; Korté, H., A new semantics for the epistemology of geometry iiepistemological completeness of Newton-Galilei and Einstein-Maxwell theory, Erkenntnis, 42, 161-189, (1995)
[40] Coleman, S.; Wess, J.; Zumino, B., Structure of phenomenological Lagrangians. I, Physical Review, 177, 2239-2247, (1969)
[41] Cotton, E., Sur la représentation conforme des variétés à trois dimensions, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 127, 349-351, (1898) · JFM 29.0573.03
[42] Cotton, E., Sur LES variétés à trois dimensions, Annales de la faculté des sciences de Toulouse, 1, 385-438, (1899) · JFM 30.0538.01
[43] Cunningham, E., The principle of relativity in electrodynamics and an extension thereof, Proceedings of the London Mathematical Society, 8, 77-98, (1910)
[44] de Broglie, L., Rayonnement noir et quanta de lumière, Journal de Physique et la Radium, 3, 422-428, (1922)
[45] de Broglie, L., Ondes et quanta, Comptes Rendus Hebdomadaires des Séances de l׳Académie des Sciences, 177, 507-510, (1923)
[46] de Broglie, L., A tentative theory of light quanta, Philosophical Magazine and Journal of Science, 47, 446-458, (1924)
[47] de Broglie, L. (1940). La Mécanique Ondulatoire du Photon: Une Nouvelle Théorie de la Lumière, Tome Premier: La Lumière dans le Vide. Paris: Hermann et Cie. · JFM 66.1412.01
[48] de Broglie, L. (1942). La Mécanique Ondulatoire du Photon: Une Nouvelle Théorie de la Lumière, Tome Second: Les Interactions entre Les Photons et la Matiére. Paris: Hermann et Cie.
[49] de Broglie, L. (1943). Théorie Général des Particules a Spin (Method de Fusion). Paris: Gauthier-Villars.
[50] de Broglie, L. (1954). Théorie Général des Particules a Spin (Method de Fusion) (2nd ed.). Paris: Gauthier-Villars. · Zbl 0058.23104
[51] de Rham, C., Massive gravity, Living Reviews in Relativity, 17, (2014), arxiv:1401.4173v2[hep-th] · Zbl 1320.83018
[52] de Rham, C.; Gabadadze, G.; Tolley, A. J., Resummation of massive gravity, Physical Review Letters, 106, 231101, (2011), arxiv:1011.1232v2[hep-th]
[53] Delbourgo, R.; Salam, A.; Strathdee, J., Suppression of infinities in einstein׳s gravitational theory, Lettere al Nuovo Cimento, 2, 354-359, (1969)
[54] Deruelle, N., Nordström׳s scalar theory of gravity and the equivalence principle, General Relativity and Gravitation, 43, 3337-3354, (2011), arxiv:1104.4608[gr-qc] · Zbl 1230.83075
[55] Deruelle, N.; Sasaki, M., Conformal transformations and nordström׳s scalar theory of gravity, Progress of Theoretical Physics Supplement, 190, 143-154, (2011), arxiv:org:1012.5386v1
[56] Deser, S., Self-interaction and gauge invariance, General Relativity and Gravitation, 1, 9-18, (1970), gr-qc/0411023v2
[57] Deser, S., Gravity from self-interaction redux, General Relativity and Gravitation, 42, 641-646, (2010), arxiv:0910.2975 · Zbl 1186.83014
[58] Deser, S.; Halpern, L., Self-coupled scalar gravitation, General Relativity and Gravitation, 1, 131-136, (1970)
[59] DeWitt, B. S., Dynamical theory of groups and fields, (1965), Gordon and Breach New York · Zbl 0169.57101
[60] Dine, M., Naturalness under stress, Annual Review of Nuclear and Particle Science, 65, 43-62, (2015), arxiv:1501.01035[hep-ph]
[61] DiSalle, R., Understanding space-timethe philosophical development of physics from Newton to Einstein, (2006), Cambridge University Press Cambridge
[62] Dowker, J. S., A scalar theory of gravitation, Proceedings of the Physical Society, 85, 595-600, (1965) · Zbl 0131.43501
[63] Duhem, P., The aim and structure of physical theory, (1954), Princeton University Princeton, Translated from the second French edition, 1914; original 1906 · Zbl 0058.17503
[64] Earman, J., Are spatial and temporal congruence conventional?, General Relativity and Gravitation, 1, 143-157, (1970)
[65] Earman, J., Lambdathe constant that refuses to die, Archive for History of Exact Sciences, 55, 189-220, (2001) · Zbl 0981.01015
[66] Eddington, A., Space, time and gravitation: an outline of the general relativity theory, (1920), Cambridge University Press Cambridge
[67] Eddington, A. S., A generalisation of weyl׳s theory of the electromagnetic and gravitational fields, Proceedings of the Royal Society of London, Series A, 99, 104-122, (1921) · JFM 48.1040.04
[68] Eddington, A. S., The nature of the physical world, (1928), Macmillan New York · JFM 54.0060.01
[69] Edgar, S. B., Sufficient conditions for a curvature tensor to be Riemannian and for determining its metric, Journal of Mathematical Physics, 32, 1011-1016, (1991) · Zbl 0737.53021
[70] Edgar, S. B., Conditions for a symmetric connection to be a metric connection, Journal of Mathematical Physics, 33, 3716-3722, (1992) · Zbl 0768.53006
[71] Edgar, S. B., Necessary and sufficient conditions for (i) Weyl, (ii) Riemann-Cartan connections, Journal of Geometry and Physics, 13, 259-274, (1994) · Zbl 0799.53016
[72] Ehlers, J., Pirani, F. A. E., & Schild, A. (1972). The geometry of free fall and light propagation. In L. O׳Rairfeartaigh (Ed.), General relativity: Papers in honour of J. L. Synge (pp. 63-84). Oxford: Clarendon. Reprinted in (201) General Relativity and Gravitation 44, 1587-1609. · Zbl 0267.53036
[73] Einstein, A. (1922). Geometry and experience. In Sidelights on relativity. New York: E. P. Dutton. Reprint (1983) New York: Dover.
[74] Einstein, A. (1923). Cosmological considerations on the general theory of relativity. In H. A. Lorentz, A. Einstein, H. Minkowski, H. Weyl, A. Sommerfeld, W. Perrett, & G. B. Jeffery (Eds.). The principle of relativity. London: Methuen. Reprint (1952) New York: Dover. Translated from “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,” Sitzungsberichte der Königlich Preussichen Akademie der Wissenschaften zu Berlin (1917) (pp. 142-152).
[75] Einstein, A. (1996). Über die spezielle und die allgemeine Relativitätstheorie (Gemeinverständlich). In A. J. Kox, M, Klein, & R. Schulmann (Eds.), The Collected Papers of Albert Einstein, The Berlin Writings, 1914-1917 (Vol. 6, pp. 420-539). Princeton: Princeton University.
[76] Einstein, A. (1998). To Rudolf Förster. In R. Schulmann, A. J. Kox, M. Janssen, & J. Illy (Eds.), The collected papers of Albert Einstein, The Berlin years: Correspondence, 1914-1918, (Vol. 8, pp. 556, 557). Princeton: The Hebrew University of Jerusalem and Princeton University Press.
[77] Einstein, A. (2002a). Comment about periodical fluctuations of lunar longitude, which so far appeared to be inexplicable in Newtonian mechanics. In M. Janssen, R. Schulmann, J. Illy, C. Lehner, & D. K. Buchwald (Eds.), The Collected Papers of Albert Einstein, The Berlin Writings, 1918-1921 (Vol. 7, pp. 141-146). Princeton: Princeton University. “Bemerkung über periodische Schwankungen der Mondlänge, welche bisher nach der Newtonschen Mechanik nicht erklärbar schienen,” Königliche Preussiche Akademie der Wissenschaften (Berlin). Sitzungsberichte (1919), pp. 433-436.
[78] Einstein, A. (2002b). Excerpt from lecture notes for course on general relativity at the University of Zurich, summer semester 1919. In M. Janssen, R. Schulmann, J. Illy, C. Lehner, & D. K. Buchwald (Eds.), The collected papers of Albert Einstein, The Berlin Writings, 1918-1921 (Vol. 7, pp. 185-189). Princeton: Princeton University.
[79] Einstein, A. (2007). On the present state of the problem of gravitation. In J. Renn, & M. Schemmel (Eds.), The genesis of general relativity, Gravitation in the twilight of classical physics: Between mechanics, field theory, and astronomy (Vol. 3, pp. 543-566). Dordrecht: Springer. Translated from (1913) “Zum gegenwärtigen Stande des Gravitationsproblems,” Physikalische Zeitschrift, 14, 1249-1262.
[80] Einstein, A.; Fokker, A. D., Die nordströmsche gravitationstheorie vom standpunkt des absoluten differentialkalküls, Annalen der Physik, 44, 321-328, (1914), English translation in Anna Beck and Don Howard, The collected papers of Albert Einstein, The Swiss years: Writings, 1912-1914 (Vol. 4. pp. 293-299), English Translation. Princeton: The Hebrew University of Jerusalem and Princeton University Press, 1996 · JFM 45.1117.03
[81] Faraoni, V.; Cooperstock, F. I., When a mass term does not represent a mass, European Journal of Physics, 19, 419-423, (1998), physics/9807056 · Zbl 1032.83506
[82] Faraoni, V.; Nadeau, S., (pseudo)issue of the conformal frame revisited, Physical Review D, 75, 023501, (2007), gr-qc/0612075v1
[83] Feynman, R. P., Quantum theory of gravitation, Acta Physica Polonica, 24, 697-722, (1963)
[84] Feynman, R. P. (1971). Lectures on Gravitation, California Institute of Technology, Pasadena, California, 1962-63, Lecture notes by Fernando B. Morinigo and William G. Wagner. California Institute of Technology.
[85] Feynman, R. P.; Morinigo, F. B.; Wagner, W. G.; Hatfield, B.; Preskill, J.; Thorne, K. S., Feynman lectures on gravitation, (1995), Addison-Wesley Reading, Mass, Original by California Institute of Technology, 1963
[86] Fierz, M., Über die relativistische theorie kräftefreier teilchen mit beliebigem spin, Helvetica Physica Acta, 12, 3-37, (1939) · JFM 65.1530.03
[87] Fierz, M., Über den drehimpuls von teilchen mit ruhemasse null und beliebigem spin, Helvetica Physica Acta, 13, 45-60, (1940) · JFM 66.1174.05
[88] Fierz, M.; Pauli, W., On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proceedings of the Royal Society (London) A, 173, 211-232, (1939) · JFM 65.1532.01
[89] Finzi, A., Le ipersuperficie a tre dimensioni che si possono rappresentare conformemente sullo spazio euclideo, Atti del Reale Istituto Veneto di scienze, lettere ed arti, 62, 1049-1062, (1903) · JFM 34.0668.03
[90] Finzi, A., Sulle varietá in rappresentazione conforme con la varietá euclidea a piú di tre dimensioni, Rendiconti (Reale Accademia dei Lincei. Classe di scienze fisiche, matematiche e naturali), Roma, 31, 8-12, (1922) · JFM 48.0854.06
[91] Finzi, A., Sulla curvatura conforme di una varietá, Rendiconti (Reale Accademia dei Lincei. Classe di scienze fisiche, matematiche e naturali), Roma, 32, 215-218, (1923) · JFM 49.0547.02
[92] Freund, P. G.O.; Maheshwari, A.; Schonberg, E., Finite-range gravitation, Astrophysical Journal, 157, 857-867, (1969)
[93] Freund, P. G.O.; Nambu, Y., Scalar fields coupled to the trace of the energy-momentum tensor, Physical Review, 174, 1741-1743, (1968)
[94] Friedman, M., Grünbaum on the conventionality of geometry, Synthese, 24, 219-235, (1972) · Zbl 0292.02007
[95] Friedman, M., Foundations of space-time theories: relativistic physics and philosophy of science, (1983), Princeton University Press Princeton
[96] Fubini, G., Sulla teoria delle ipersfere e dei gruppi conformi in una metrica qualunque, Rendiconti (Reale Istituto lombardo di scienze e lettere), 38, 178-192, (1905) · JFM 36.0722.03
[97] Gamow, G., My world line: an informal autobiography, (1970), Viking Press New York
[98] Garrett, T. (2011). Binary inspirals in Nordström׳s second theory. arXiv:1102.5332 [gr-qc].
[99] Girelli, F.; Liberati, S.; Sindoni, L., On the emergence of Lorentzian signature and scalar gravity, Physical Review D, 79, 044019, (2009), arXiv:0806.4239v2 [gr-qc]
[100] Giulini, D. (2007). Some remarks on the notions of general covariance and background independence. In E. Seiler, & I. O. Stamatescu (Eds.), Approaches to fundamental physics: An assessment of current theoretical ideas, Lecture notes in physics (Vol. 721, pp. 105-122). New York: Springer. gr-qc/0603087.
[101] Giulini, D., What is (not) wrong with scalar gravity?, Studies in History and Philosophy of Modern Physics, 39, 154-180, (2008), gr-qc/0611100v2 · Zbl 1223.83041
[102] Glauber, R. J., On the gauge invariance of the neutral vector meson theory, Progress of Theoretical Physics, 9, 295-298, (1953) · Zbl 0050.43303
[103] Goenner, H. F.M., On the history of unified field theories, Living Reviews in Relativity, 7, 2, (2004) · Zbl 0666.70018
[104] Goldhaber, A. S.; Nieto, M. M., Terrestrial and extraterrestrial limits on the photon mass, Reviews of Modern Physics, 43, 277-296, (1971)
[105] Goldhaber, A. S.; Nieto, M. M., Photon and graviton mass limits, Reviews of Modern Physics, 82, 939-979, (2010), arXiv:0809.1003v4 [hep-ph]
[106] Gotay, M. J., Isenberg, J., Marsden, J. E., Montgomery, R., Śniatycki, J., & Yasskin, P. B. (2004). Momentum maps and classical fields. Part I: Covariant field theory. 〈www.arxiv.org.physics/9801019v2〉.
[107] Grünbaum, A., Geometry and chronometry in philosophical perspective, (1968), University of Minnesota Minneapolis · Zbl 0194.30402
[108] Grünbaum, A., Space, time and falsifiability critical exposition and reply to “A panel discussion of grünbaum׳s philosophy of science”, part I, Philosophy of Science, 37, 469-588, (1970), Reprinted as Chapter 16, Philosophical problems of space and time (2nd ed., pp. 449-568). Dordrecht: Reidel, 1973
[109] Grünbaum, A. (1973a). The ontology of the curvature of empty space in the geometrodynamics of Clifford and Wheeler. In P. Suppes (Ed.), Space, time and geometry (pp. 268-295). Dordrecht: D. Reidel.
[110] Grünbaum, A. (1973b). Philosophical problems of space and time (2nd ed.). Dordrecht: Reidel.
[111] Grünbaum, A. (1977). Absolute and relational theories of space and space-time. In J. Earman, C. Glymour, J. Stachel (Eds.), Foundations of space-time theories. Minnesota studies in the philosophy of science, volume IV (pp. 303-373). Minneapolis: University of Minnesota.
[112] Gupta, S. N., Quantization of einstein׳s gravitational fieldgeneral treatment, Proceedings of the Physical Society A (London), 65, 608-619, (1952) · Zbl 0047.21502
[113] Gupta, S. N., Gravitation and electromagnetism, Physical Review, 96, 1683-1685, (1954) · Zbl 0056.44103
[114] Gupta, S. N., Einstein׳s and other theories of gravitation, Reviews of Modern Physics, 29, 334-336, (1957) · Zbl 0079.41804
[115] Gürsey, F., Gravitation and cosmic expansion in conformal space-time, Proceedings of the Cambridge Philosophical Society, 49, 285-291, (1953) · Zbl 0053.16801
[116] Haantjes, J., The conformal Dirac equation, Nederlandse Akademie van Wetenschappen: Proceedings of the Section of Sciences, 44, 324-332, (1941) · Zbl 0025.38105
[117] Harvey, A.; Schucking, E., Einstein׳s mistake and the cosmological constant, American Journal of Physics, 68, 8, 723-727, (2000) · Zbl 1219.83008
[118] Harvey, A. L., Brief review of Lorentz-covariant scalar theories of gravitation, American Journal of Physics, 33, 449-460, (1965) · Zbl 0142.46704
[119] Hassan, S. F.; Rosen, R. A., On non-linear actions for massive gravity, Journal of High Energy Physics, 1107, 009, (2011), arXiv:1103.6055v3 [hep-th]
[120] Hassan, S. F.; Rosen, R. A., Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity, Journal of High Energy Physics, 1204, 123, (2012), 0-16, arXiv:1111.2070 [hep-th] · Zbl 1348.83065
[121] Hawkins, T. (2000). Emergence of the theory of Lie groups: An essay in the history of mathematics 1869-1926. Sources and Studies in the History of Mathematics and Physical Sciences. Springer, New York. · Zbl 0965.01001
[122] Heckmann, O. (1942). Theorien der Kosmologie. Berlin: Springer, revised edition. Reprinted 1968. · JFM 68.0635.04
[123] Hehl, F., On the energy tensor of spinning massive matter in classical field theory and general relativity, Reports on Mathematical Physics, 9, 55-82, (1976)
[124] Hehl, F. W.; Lord, E. A.; Smalley, L. L., Metric-affine variational principles in general relativity. II. relaxation of the Riemannian constraint, General Relativity and Gravitation, 13, 1037-1056, (1981) · Zbl 0477.53037
[125] Hehl, F. W.; von der Heyde, P.; Kerlick, G. D.; Nester, J. E., General relativity with spin and torsionfoundations and prospects, Reviews of Modern Physics, 48, 393-416, (1976) · Zbl 1371.83017
[126] Hinterbichler, K., Theoretical aspects of massive gravity, Reviews of Modern Physics, 84, 671-710, (2012), arXiv:1105.3735v2 [hep-th]
[127] Hurth, T., Higgs-free massive nonabelian gauge theories, Helvetica Physica Acta, 70, 406-416, (1997) · Zbl 0875.81028
[128] Isham, C. J.; Salam, A.; Strathdee, J., Nonlinear realizations of space-time symmetries. scalar and tensor gravity, Annals of Physics, 62, 98-119, (1971) · Zbl 0209.58701
[129] Isham, C. J.; Salam, A.; Strathdee, J., Infinity suppression in gravity-modified electrodynamics. II, Physical Review D, 5, 2548-2565, (1972)
[130] Jackson, J. D. (1975). Classical electrodynamics (2nd ed.). New York: Wiley. · Zbl 0997.78500
[131] Janssen, M., & Renn, J. (2007). Untying the knot: How Einstein found his way back to field equations discarded in the Zurich notebook. In J. Renn (Ed.), The genesis of general relativity, Einsteins Zurich notebook: Commentary and essays (Vol. 2, pp. 839-925). Dordrecht: Springer.
[132] Kasner, E., Einstein׳s theory of gravitationdetermination of the field by light signals, American Journal of Mathematics, 43, 20-28, (1921) · JFM 48.1039.04
[133] Kasner, E., The solar gravitational field completely determined by its light rays, Mathematische Annalen, 85, 227-236, (1922) · JFM 48.1039.05
[134] Kerszberg, P., The invented universe: the Einstein-de Sitter controversy (1916-17) and the rise of relativistic cosmology, (1989), Clarendon Press Oxford
[135] (Klein, M. J.; Kox, A. J.; Renn, J.; Schulmann, R., The collected papers of Albert Einstein, Volume 4, The Swiss Years: Writings, 1912-1914, (1995), The Hebrew University of Jerusalem and Princeton University Press Princeton)
[136] Knox, E., Effective spacetime geometry, Studies in History and Philosophy of Modern Physics, 44, 346-356, (2013) · Zbl 1281.83010
[137] Kohler, M., Die formulieringung der erhaltungssätze der energie und des impulses in der allgemeinen relativitätstheorie, Zeitschrift für Physik, 131, 571-602, (1952) · Zbl 0047.20801
[138] Kohler, M., Die formulieringung der erhaltungssätze der energie und des impulses in der allgemeinen relativitätstheorie. II, Zeitschrift für Physik, 134, 286-305, (1953) · Zbl 0050.21401
[139] Kragh, H., Equation with the many fathersthe Klein-Gordon equation in 1926, American Journal of Physics, 52, 1024-1033, (1984)
[140] Kraichnan, R. H., Special-relativistic derivation of generally covariant gravitation theory, Physical Review, 98, 1118-1122, (1955) · Zbl 0068.40103
[141] Lakatos, I., History of science and its rational reconstruction, (Buck, R. C.; Cohen, R. S., PSA: Proceedings of the biennial meeting of the philosophy of science association, 1970. Boston studies in the philosophy of science, (1971), D. Reidel Dordrecht), 91-136
[142] Lehner, C. (2005). Einstein and the principle of general relativity, 1916-1921. In A. J. Kox, & J. Eisenstaedt (Eds.), The universe of general relativity, Einstein studies, (Vol. 11, pp. 103-108). Boston: Birkhäuser. · Zbl 1099.83503
[143] Levi-Civita, T., The absolute differential calculus: calculus of tensors, (1926), Blackie and Son London, Translated by Marjorie Long · JFM 53.0682.01
[144] Littlewood, D. E. (1953). Conformal transformations and kinematical relativity. Proceedings of the Cambridge Philosophical Society, 90-96. · Zbl 0050.21601
[145] Lott, J., Some geometric properties of the Bakry-émery-Ricci tensor, Commentarii Mathematici Helvetici, 78, 865-883, (2003) · Zbl 1038.53041
[146] Maher, P., Betting on theories, (2008), Cambridge University Press Cambridge
[147] Malament, D., A modest remark about Reichenbach, rotation, and general relativity, Philosophy of Science, 52, 615-620, (1985)
[148] Manrique, E.; Reuter, M., Bimetric truncations for quantum Einstein gravity and asymptotic safety, Annals of Physics, 325, 785-815, (2010), arXiv:0907.2617 [gr-qc] · Zbl 1186.83060
[149] Marzke, R. F.; Wheeler, J. A., Gravitation as geometry-ithe geometry of space- time and the geometrodynamical standard meter, (Chiu, H.-Y.; Hoffman, W. F., Gravitation and Relativity, (1964), W. A. Benjamin New York), 40-64
[150] McCrea, W. H., The cosmical constant, Quarterly Journal of the Royal Astronomical Society, 12, 140-153, (1971)
[151] Misner, C.; Thorne, K.; Wheeler, J. A., Gravitation, (1973), Freeman New York
[152] Mittelstaedt, P., Lorentzinvariante gravitationstheorie, (1970), Westdeutscher Cologne
[153] Nachtmann, O.; Schmidle, H.; Sexl, R. U., On the structure of field theories of gravitation, Acta Physica Austriaca, 29, 289-299, (1968)
[154] Nachtmann, O.; Schmidle, H.; Sexl, R. U., On the most general linear theory of gravitation, Communications in Mathematical Physics, 13, 254-256, (1969)
[155] Neumann, C., Allgemeine untersuchungen über das newton׳sche princip der fernwirkungen mit besonderer Rücksicht auf die elektrischen wirkungen, (1896), B. G. Teubner Leipzig · JFM 27.0658.01
[156] Neumann, C. G., Über die den kräften elektrodynamischen ursprungs zuzuschreibenden elementargesetze, Abhandlungen der mathematisch-physikalischen Classe der Königlichen Sächsichen Gesellschaft der Wissenschaften, 10, 6, 417-524, (1874)
[157] Neumann, C. G., Ueber gewisse particulare integrale der differentialgleichung \(\operatorname{\Delta} F = F\), insbesondere über die entwickelung dieser particularen integrale nach kugelfunctionen, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Classe, 38, 75-82, (1886)
[158] Norton, J. D., Einstein, Nordström and the early demise of scalar, Lorentz-covariant theories of gravitation, Archive for History of Exact Sciences, 45, 1, 17-94, (1992) · Zbl 0768.01011
[159] Norton, J. D., General covariance and the foundations of general relativityeight decades of dispute, Reports on Progress in Physics, 56, 791-858, (1993)
[160] Norton, J. D., Why geometry is not conventionalthe verdict of covariance principles, (Majer, U.; Schmidt, H.-J., Semantical aspects of spacetime theories, (1994), B. I. Wissenschaftsverlag Mannheim), 159-167
[161] Norton, J. D. (1995). Eliminative induction as a method of discovery: How Einstein discovered General Relativity. In J. Leplin (Ed.), The creation of ideas in physics: Studies for a methodology of theory construction, The University of Western Ontario series in philosophy of science (Vol. 55, pp. 29-69). Dordrecht: Kluwer Academic.
[162] Norton, J. D. (1999a). The cosmological woes of Newtonian gravitation theory. In H. Goenner, J. Renn, J. Ritter, & T. Sauer, (Eds.), The expanding worlds of general relativity, Einstein studies (Vol. 7, pp. 271-323). Boston: Birkhäuser.
[163] Norton, J. D., Geometries in collisioneinstein, Klein and Riemann, (Gray, J., The symbolic universe, (1999), Oxford University Press Oxford), 128-144 · Zbl 1059.01506
[164] Norton, J. D., Einstein׳s triumph over the spacetime coordinate systema paper presented in honor of roberto torretti, Diálogos, 79, 253-262, (2002)
[165] Norton, J. D. (2007). What was Einsteins “fateful prejudice”? In J. Renn (Ed.), The Genesis of general relativity, Einsteins Zurich notebook: Commentary and essays (Vol. 2, pp. 715-783). Dordrecht: Springer.
[166] Norton, J. D., Why constructive relativity fails, The British Journal for the Philosophy of Science, 59, 821-834, (2008) · Zbl 1154.83300
[167] Ogievetskii˘, V. I.; Polubarinov, I. V., Spinors in gravitation theory, Soviet Physics JETP, 21, 1093-1100, (1965)
[168] Ogievetsky, V. I., Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups, Lettere al Nuovo Cimento, 8, 988-990, (1973)
[169] Ogievetsky, V. I.; Polubarinov, I. V., Interacting field of spin 2 and the Einstein equations, Annals of Physics, 35, 167-208, (1965)
[170] Ohanian, H.; Ruffini, R., Gravitation and spacetime, (1994), Norton New York · Zbl 0846.53052
[171] Ohanian, H. C., Einstein׳s mistakes: the human failings of genius, (2008), W. W. Norton & Company New York · Zbl 1156.01012
[172] Papapetrou, A., Einstein׳s theory of gravitation and flat space, Proceedings of the Royal Irish Academy A, 52, 11-23, (1948)
[173] Pauli, W.; Fierz, M., Über relativistische feldgleichungen von teilchen mit beliebigem spin im elektromagnetischen feld, Helvetica Physica Acta, 12, 297-300, (1939) · Zbl 0021.27605
[174] Peres, A., Polynomial expansion of gravitational Lagrangian, Il Nuovo Cimento, 28, 865-867, (1963) · Zbl 0112.22009
[175] Petiau, G., Sur la représentation unitaire de l׳électromagnétisme et de la gravitation en mécanique ondulatoire, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 212, 1126-1128, (1941) · JFM 67.0935.02
[176] Petiau, G., Sur la théorie du corpuscule de spin 2, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 212, 292-295, (1941) · JFM 67.0935.04
[177] Petiau, G., Sur une représentation du corpuscule de spin 2, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 212, 47-50, (1941) · JFM 67.0935.03
[178] Petiau, G., Sur la représentation d׳interactions neutron-proton s׳exerçant par l׳intermédiaire de la particule de spin 2, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 217, 103-104, (1943)
[179] Petiau, G., Sur la représentation d׳interactions s׳exerçant par l׳intérmediaire de la particule de spin total maximum \(2 . h / 2 \pi\), Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 217, 665-667, (1943)
[180] Petiau, G., Sur l׳equation d׳ondes du corpuscle de spin total maximum \(2 \frac{h}{2 \pi}\), Revue Scientifique, 81, 499-500, (1943)
[181] Petiau, G., Sur la représentation des interactions massiques par l׳intermédiaire des ondes longitudinales de la théorie de la particule de spin \(2(h / 2 \pi)\), Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 218, 34-36, (1944)
[182] Petiau, G., Sur LES équations d׳ondes macroscopiques du corpuscule de spin 2 en présence de matière, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 218, 136-138, (1944)
[183] Petiau, G., Sur LES interactions entre particules matérielles s׳exerçant par l׳intermédiaire de la particule de spin \(2 \frac{h}{2 \pi}\), Journal de Physique et le Radium, 6, 115-120, (1945)
[184] Petiau, G., Sur LES équations d׳ondes des corpuscules de spin quelconque. I, Journal de Physique et le Radium, 7, 124-128, (1946) · Zbl 0060.45201
[185] Petiau, G., Sur LES équations d׳ondes des corpuscules de spin quelconque. II, Journal de Physique et le Radium, 7, 181-184, (1946) · Zbl 0060.45201
[186] Pietenpol, J. L.; Speiser, D., Une théorie scalaire covariante de la gravitation et ses implications pour la relativité générale, Annales de la Société Scientifique de Bruxelles, Serie I (Sciences Mathematiques, Astronomiques et Physiques), 86, 220-226, (1972)
[187] Pitts, J. B., Absolute objects and counterexamplesjones-Geroch dust, torretti constant curvature, tetrad-spinor, and scalar density, Studies in History and Philosophy of Modern Physics, 37, 347-371, (2006), gr-qc/0506102v4 · Zbl 1223.83057
[188] Pitts, J. B., Massive Nordström scalar (density) gravities from universal coupling, General Relativity and Gravitation, 43, 871-895, (2011), arXiv:1010.0227v1 [gr-qc] · Zbl 1213.83121
[189] Pitts, J. B., Permanent underdetermination from approximate empirical equivalence in field theorymassless and massive scalar gravity, neutrino, electromagnetic, Yang-Mills and gravitational theories, The British Journal for the Philosophy of Science, 62, 259-299, (2011) · Zbl 1266.81131
[190] Pitts, J. B., Universally coupled massive gravity, iidensitized tetrad and cotetrad theories, General Relativity and Gravitation, 44, 401-426, (2011), arXiv:1110.2077 · Zbl 1235.83079
[191] Pitts, J. B., The nontriviality of trivial general covariancehow electrons restrict ‘time’ coordinates, spinors (almost) fit into tensor calculus, and 7/16 of a tetrad is surplus structure, Studies in History and Philosophy of Modern Physics, 43, 1-24, (2012), arXiv:1111.4586 · Zbl 1281.81039
[192] Pitts, J. B. (2015). Universally coupled massive gravity, III: dRGT-Maheshwari pure spin-2, Ogievetsky-Polubarinov and arbitrary mass terms. arXiv:1505.03492 [gr-qc] · Zbl 1342.83286
[193] Pitts, J. B.; Schieve, W. C., Slightly bimetric gravitation, General Relativity and Gravitation, 33, 1319-1350, (2001), gr-qc/0101058v3 · Zbl 1013.83020
[194] Pitts, J. B.; Schieve, W. C., Universally coupled massive gravity, Theoretical and Mathematical Physics, 151, 700-717, (2007), gr-qc/0503051v3 · Zbl 1140.83313
[195] Pockels, F., Über die partielle differentialgleichung \(\operatorname{\Delta} u + k^2 u = 0\) und deren auftreten in der mathematischen physik, (1891), B. G. Teubner Leipzig · JFM 23.0403.01
[196] Poenaru, D. N.; Calboreanu, A., Alexandru proca (1897-1955) and his equation of the massive vector boson field, Europhysics News, 37, 5, 24-26, (2006)
[197] Poincaré, H. (1913). Science and hypothesis. In The foundations of science. Lancaster, Pennsylvania: The Science Press. Translated by George Bruce Halsted, reprinted 1946; French original 1902.
[198] Proca, A., Sur la théorie ondulatoire des électrons positifs et négatifs, Journal de Physique et le Radium, 7, 347-353, (1936) · JFM 62.1633.03
[199] Putnam, H., Time and physical geometry, The Journal of Philosophy, 64, 240-247, (1967)
[200] Putnam, H. (1975). An examination of Grünbaum׳s philosophy of geometry. In Mathematics, matter, and method: Philosophical papers, (Vol. I, pp. 93-129). Cambridge: Cambridge University Press. Reprinted from Bernard Baumrin (Ed.), Philosophy of science. The Delaware seminar, 1962-1963 (Vol. 2. pp. 205-255). New York: Interscience Publishers, 1963.
[201] Putnam, H. (1975). The refutation of conventionalism. In Mind, language and reality: Philosophical papers, (Vol. 2, pp. 153-191). Cambridge: Cambridge University Press.
[202] Reichenbach, H., Philosophie der raum-zeit-lehre, (1928), Vieweg Braunschweig · JFM 54.0937.17
[203] Reichenbach, H., Die neue theorie einsteins über die verschmelzung von gravitation und elektrizität, Zeitschrift für angewandte Chemie, 42, 121-123, (1929)
[204] Reichenbach, H., Zur einordnung des neuen einsteinschen ansatzes über gravitation und elektrizität, Zeitschrift für Physik, 53, 683-689, (1929) · JFM 55.0497.01
[205] Reichenbach, H., The philosophy of space and time, (1958), Dover New York, Partial translation by Maria Reichenbach and John Freund of Philosophie der Raum-Zeit-Lehre, Vieweg, Braunschweig (1928) · Zbl 0082.01301
[206] Reichenbach, H. Weyl׳s extension of the Riemannian concept of space and the geometrical interpretation of electricity—appendix. Box 41, Folder 21. 〈http://digital.library.pitt.edu/u/ulsmanuscripts/pdf/31735062233568.pdf〉.
[207] Renn, J. (2005). Before the Riemann tensor: The emergence of Einsteins double strategy. In A. J. Kox, & J. Eisenstaedt (Eds.), The Universe of general relativity, Einstein studies (Vol. 11, pp. 53-65). Boston: Birkhäuser. · Zbl 1103.83004
[208] Renn, J.; Sauer, T., Pathways out of classical physicseinstein׳s double strategy in his seach for the gravitational field equations, (Renn, J., The genesis of general relativity, Volume 1: Einstein׳s Zurich notebook: Introduction and source, (2007), Springer Dordrecht), 113-312
[209] (Renn, J.; Schemmel, M., The genesis of general relativity, Volume 3: Gravitation in the twilight of classical physics: Between mechanics, field theory, and astronomy, (2007), Springer Dordrecht) · Zbl 1216.83015
[210] Romero, C.; Fonseca-Neto, J. B.; Pucheu, M. L., Conformally flat spacetimes and Weyl frames, Foundations of Physics, 42, 224-240, (2012), arXiv:1101.5333 [gr-qc] · Zbl 1243.83049
[211] Rosen, N., General relativity and flat space. I., II, Physical Review, 57, 147-150, (1940), 150-153 · JFM 66.1145.02
[212] Rosen, N., A theory of gravitation, Annals of Physics, 84, 455-473, (1974)
[213] Rovelli, C., Notes for a brief history of quantum gravity, (Jantzen, R. T.; Ruffini, R.; Gurzadyan, V. G., Proceedings of the ninth Marcel Grossmann meeting (held at the University of Rome “La Sapienza׳, 2-8 July 2000), (2002), World Scientific River Edge, New Jersey), 742-768, gr-qc/0006061 · Zbl 1030.83003
[214] Roy, D. P., Neutrino mass and oscillationan introductory review, Pramana, Journal of Physics, 54, 3-20, (2000)
[215] Ruegg, H.; Ruiz-Altaba, M., The Stueckelberg field, International Journal of Modern Physics A, 19, 3265-3348, (2004), hep-th/0304245v2 · Zbl 1080.81041
[216] Salmon, W. C., The curvature of physical space, (Earman, J.; Glymour, C.; Stachel, J., Foundations of space-time Theories. Minnesota studies in the philosophy of science,vol. VIII, (1977), University of Minnesota Minneapolis), 281-302
[217] Salmon, W. C. (1977). The Philosophy of Hans Reichenbach. In Hans Reichenbach: Logical empiricist (pp. 1-84). Dordrecht: D. Reidel.
[218] Scholz, E. (2005). Local spinor structures in V. Fock׳s and H. Weyl׳s work on the Dirac equation (1929). In J. Kouneiher, D. Flament, P. Nabonnand, & J. J. Szczeciniarz (Eds.), Géométrie au XX^{e}siécle, 1930-2000: Histoire et Horizons (pp. 284-301). Paris: Hermann. physics/0409158.
[219] Schouten, J. A., Über die konforme abbildung n-dimensionaler mannigfaltigkeiten mit quadratischer massbestimmung auf eine mannigfaltigkeit mit euklidischer massbestimmung, Mathematische Zeitschrift, 11, 58-88, (1921) · JFM 48.0857.02
[220] Schouten, J. A., Ricci-kalkul, (1924), Springer Berlin · Zbl 0403.53007
[221] Schouten, J. A., Ricci-calculus: an introduction to tensor analysis and its geometrical applications, (1954), Springer Berlin · Zbl 0057.37803
[222] Schouten, J. A.; Haantjes, J., Ueber die konforminvariante gestalt der relativistichen bewegungsgleichungen, Koninklijke Akademie van Wetenschappen te Amsterdam: Proceedings of the Section of Sciences, 39, 1059-1065, (1936) · Zbl 0015.32903
[223] Schouten, J. A.; Struik, D. J., On the connection between geometry and mechanics in static problems, Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, 21, 176-183, (1919), 〈http://www.digitallibrary.nl〉
[224] Schouten, J. A. and Struik, D. J. (1938). Einführung in die Neueren Methoden der Differentialgeometrie, volume 2, Geometrie by Dirk J. Struik. P. Noordhoff, Groningen-Batavia. · Zbl 0019.18301
[225] Schrödinger, E., The earth׳s and the sun׳s permanent magnetic fields in the unitary field theory, Proceedings of the Royal Irish Academy, 49A, 135-148, (1943) · Zbl 0060.44205
[226] Schrödinger, E., The general unitary theory of the physical fields, Proceedings of the Royal Irish Academy, 49A, 43-58, (1943) · Zbl 0060.44201
[227] Schucking, E. L., The introduction of the cosmological constant, (Zichichi, A.; de-Sabbata, V.; Sánchez, N., Gravitation and modern cosmology: The cosmological constant problem, volume in honor of Peter Gabriel Bergmann׳s 75th birthday, (1991), Plenum New York), 185-187
[228] Sexl, R. U., Theories of gravitation, Fortschritte der Physik, 15, 269-307, (1967)
[229] Sexl, R. U., Universal conventionalism and space-time, General Relativity and Gravitation, 1, 159-180, (1970)
[230] Shapiro, S. L.; Teukolsy, S. A., Scalar gravitationa laboratory for numerical relativity, Physical Review D, 47, 1529-1540, (1993)
[231] Shizuya, K., Rearrangement of Feynman rules and renormalizability of massive vector fields, Nuclear Physics B, 87, 255-268, (1975)
[232] Sklar, L., Facts, conventions, and assumptions in the theory of space-time, (Earman, J.; Glymour, C.; Stachel, J., Foundations of space-time theories. Minnesota studies in the philosophy of science,vol. VIII, (1977), University of Minnesota Minneapolis), 206-274
[233] Slavnov, A. A., Massive gauge fields, Theoretical and Mathematical Physics, 10, 201-217, (1972)
[234] Slavnov, A. A.; Faddeev, L. D., Massless and massive Yang-Mills fields, Theoretical and Mathematical Physics, 3, 312-316, (1971)
[235] Spirtes, P. L. (1981). Conventionalism and the philosophy of Henri Poincaré (Ph.D. thesis). University of Pittsburgh.
[236] Stachel, J., “the relations between things“ versus “the things between relations”: the deeper meaning of the hole argument, (Malament, D. B., Reading natural philosophy: Essays in the history and philosophy of science and mathematics, (2002), Open Court Chicago), 231-266 · Zbl 1157.01308
[237] Stanford, P. K., Exceeding our grasp: science, history, and the problem of unconceived alternatives, (2006), Oxford University New York
[238] Stein, H., On space-time ontologyextract from a letter to Adolf grünbaum, (Earman, J.; Glymour, C.; Stachel, J., Foundations of space-time theories, Minnesota studies in the philosophy of science,vol. VIII, (1977), University of Minnesota Minneapolis), 374-402
[239] Struik, D., Grundzüge der mehrdimensionalen differentialgeometrie, (1922), Springer Berlin · JFM 48.0841.04
[240] Stueckelberg, E. C.G., Théorie de la radiation de photons de masse arbitrairement petit, Helvetica Physica Acta, 30, 209-215, (1957) · Zbl 0077.42603
[241] Sundermeyer, K. (1982). Constrained dynamics: With applications to Yang-Mills theory, general relativity, classical spin, dual string model. Lecture notes in physics (Vol. 169). Berlin: Springer. · Zbl 0508.58002
[242] Sundrum, R. (2004). Gravity׳s scalar cousin. hep-th/0312212v2.
[243] ’t Hooft, G. (1980). Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. In G. ’t Hooft, C. Itzykson, A. Jaffe, H. Lehmann, P. K. Mitter, I. M. Singer, (Eds.), Recent developments in Gauge theories. Proceedings of the NATO advanced study institute on recent developments in Gauge theories, held in Cargése, Corsica, August 26-September 8, 1979, NATO Science Series B, Physics (Vol. 59, pp. 135-157). New York: Plenum.
[244] Thomas, T. Y., Invariants of relative quadratic differential forms, Proceedings of the National Academy of Sciences of the United States of America, 11, 722-725, (1925) · JFM 51.0325.02
[245] Thomas, T. Y., On conformal geometry, Proceedings of the National Academy of Sciences of the United States of America, 12, 352-359, (1926) · JFM 52.0736.01
[246] Tonnelat, M.-A., Densité-flux et densité d׳énergie dans la théorie du corpuscule de spin 2, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 212, 384-386, (1941) · JFM 67.0936.04
[247] Tonnelat, M.-A., La seconde quantification dans la théorie du corpuscule de spin 2, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 212, 430-432, (1941) · JFM 67.0936.03
[248] Tonnelat, M.-A., Sur la fusion de deux particules de spin 1, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 212, 187-189, (1941) · JFM 67.0936.01
[249] Tonnelat, M.-A., Sur LES ondes planes de la particule de spin 2 (graviton), Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 212, 263-266, (1941) · JFM 67.0936.02
[250] Tonnelat, M.-A., Sur une interprétation possible des grandeurs issues d׳un tenseur symétrique dans la théorie de la particule de spin 2, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 212, 687-689, (1941) · JFM 67.0936.05
[251] Tonnelat, M.-A., Théorie de la particule de spin maximum 2, Les tenseurs symétriques du second rang. Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 214, 253-256, (1942) · JFM 68.0643.01
[252] Tonnelat, M.-A., Une nouvelle forme de théorie unitaire. étude de la particule de spin 2, Annales de Physique, 17, 158-208, (1942) · JFM 68.0642.06
[253] Tonnelat, M.-A., Théorie euclidienne de l׳électromagnétisme et de la gravitation, Disquisitiones Mathematicae et Physicae, 3, 249-274, (1943)
[254] Tonnelat, M.-A., La particule de spin 2 et la loi de gravitation d׳einstein dans le cas de présence de matière, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 218, 305-308, (1944) · Zbl 0060.44406
[255] Tonnelat, M.-A., LES phénomènes de gravitation. étude des interactions entre la matiére et la particule de spin 2, Annales de Physique, 19, 396-445, (1944)
[256] Tonnelat, M.-A., Sur l׳interaction entre deux particules matérielles au moyen du corpuscule de spin maximum 2; loi de gravitation newtonienne, Comptes rendus hebdomadaires des séances de l׳Académie des sciences, 218, 139-141, (1944) · Zbl 0060.44407
[257] Torretti, R., Relativity and geometry, (1996), Dover New York, original Pergamon, Oxford, 1983
[258] Trautman, A. (1965). Foundations and current problems of General Relativity. In S. Deser, & K. W. Ford (Eds.), Lectures on general relativity. (Brandeis summer institute in theoretical physics) (pp. 1-248). Englewood Cliffs, New Jersey: Prentice Hall.
[259] Treder, H.-J., On the question of a cosmological rest mass of gravitons, International Journal of Theoretical Physics, 1, 167-169, (1968)
[260] Unruh, W. G., Unimodular theory of canonical quantum gravity, Physical Review D, 40, 1048-1052, (1989)
[261] van Dam, H.; Veltman, M., Massive and mass-less Yang-Mills and gravitational fields, Nuclear Physics B, 22, 397-411, (1970)
[262] van Dam, H.; Veltman, M., On the mass of the graviton, General Relativity and Gravitation, 3, 215-220, (1972)
[263] van Nieuwenhuizen, P., On ghost-free tensor Lagrangians and linearized gravitation, Nuclear Physics B, 60, 478-492, (1973)
[264] Veblen, O.; Thomas, T. Y., Extensions of relative tensors, Transactions of the American Mathematical Society, 26, 373-377, (1924) · JFM 50.0502.04
[265] von Laue, M., Die nordströmsche gravitationstheorie, Journal der Radioaktivität und Electronik, 14, 263-313, (1917)
[266] von Laue, M., Die relativitätstheorie, II: die allgemeine relativititätstheorie, (1953), F. Vieweg Braunschweig
[267] von Seeliger, H., Ueber das newton׳sche gravitationgesetz, Astronomische Nachrichten, 137, 129-136, (1895), NASA ADS · JFM 26.0897.01
[268] von Seeliger, H., Ueber das newton׳sche gravitationgesetz, Sitzungsberichte der mathematisch-physikalischen Classe der k. b. Akademie der Wissenschaften zu München, 26, 373-400, (1896)
[269] Wagner, C. G., Probability kinematics and commutativity, Philosophy of Science, 69, 266-278, (2002)
[270] Wald, R. M., General relativity, (1984), University of Chicago Chicago · Zbl 0549.53001
[271] Watt, K., & Misner, C. W. (1999). Relativistic scalar gravity: A laboratory for numerical relativity. gr-qc/9910032.
[272] Weatherall, J. O.; Manchak, J. B., The geometry of conventionality, Philosophy of Science, 81, 233-247, (2014)
[273] Weinberg, S., Gravitation and cosmology, (1972), Wiley New York
[274] Weinberg, S. (1995). The quantum theory of fields (Vol. I). Cambridge: Cambridge University Press.
[275] Weinstein, S., Strange couplings and space-time structure, Philosophy of Science, 63, S63-S70, (1996), Proceedings of the 1996 biennial meetings of the philosophy of science association. Part I: Contributed papers
[276] Wellner, M.; Sandri, G., Scalar gravitation, American Journal of Physics, 32, 36-39, (1964), 504 · Zbl 0121.22103
[277] Wentzel, G., Quantum theory of fields, (1949), Interscience Publishers New York, German original 1943, translated by Charlotte Houtermans and J. M. Jauch
[278] Weyl, H., Reine infinitesimalgeometrie, Mathematische Zeitschrift, 2, 384-411, (1918) · JFM 46.1301.01
[279] Weyl, H. (1921). Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffasung. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 99-112. · JFM 48.0844.04
[280] Weyl, H., Theorie der darstellung kontinuierlicher halb-einfacher gruppen durch lineare transformationen. I, Mathematische Zeitschrift, 23, 271-301, (1925) · JFM 51.0319.01
[281] Weyl, H., Gravitation and the electron, Proceedings of the National Academy of Sciences of the United States of America, 15, 323-334, (1929) · JFM 55.0513.05
[282] Wigner, E., On unitary representations of the inhomogeneous Lorentz group, Annals of Mathematics, 40, 149-204, (1939) · JFM 65.1129.01
[283] Winnie, J. A. (1977). The causal theory of space-time. In J. S. Earman, C. N. Glymour, J. J. Stachel (Eds.), Foundations of space-time theories, Minnesota studies in the philosophy of science, Volume VIII (pp. 134-205). Minneapolis: University of Minnesota.
[284] Yano, K. (1939). Sur la théorie des espaces à connexion conforme. Journal of the Faculty of Science, Imperial University of Tokyo, 4, 1-59. Reprinted in selected papers of Kentaro Yano, editor Morio Obata. North-Holland, Amsterdam (1982), (pp. 71-129). · JFM 65.1421.01
[285] Yo, H.-J.; Baumgarte, T. W.; Shapiro, S. L., Gravitational wavetrains in the quasiequilibrium approximationa model problem in scalar gravitation, Physical Review D, 63, 064035, (2001), gr-qc/0011028
[286] Yukawa, H., On the interaction of elementary particles. I, Proceedings of the Mathematico—Physical Society of Japan, 17, 48-57, (1935) · JFM 61.1592.09
[287] Zajtz, A., Primitive geometric objects, Prace Matematyczne=Schedae Mathematicae, 11, 105-111, (1966) · Zbl 0266.53010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.