×

A commented translation of Hans Richter’s early work “The isotropic law of elasticity”. (English) Zbl 07254374

Summary: We provide a faithful translation of H. Richter’s important 1948 paper “Das isotrope Elastizitätsgesetz” [Z. Angew. Math. Mech. 28, 205–217 (1948; Zbl 0033.22402)] from its original German version into English. Our introduction summarizes Richter’s achievements.

MSC:

74-XX Mechanics of deformable solids

Citations:

Zbl 0033.22402
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Richter, H. Das isotrope Elastizitätsgesetz. Z Angew Math Mech 1948; 28(7/8): 205-209. · Zbl 0033.22402 · doi:10.1002/zamm.19480280703
[2] Richter, H. Verzerrungstensor, Verzerrungsdeviator und Spannungstensor bei endlichen Formänderungen. Z Angew Math Mech 1949; 29(3): 65-75. · Zbl 0031.42603 · doi:10.1002/zamm.19490290301
[3] Richter, H. Zum Logarithmus einer Matrix. Arch Math 1949; 2(5): 360-363. · Zbl 0040.00504 · doi:10.1007/BF02036865
[4] Richter, H. Zur Elastizitätstheorie endlicher Verformungen. Math Nachr 1952; 8(1): 65-73. · Zbl 0046.41210 · doi:10.1002/mana.19520080109
[5] Martin, R J, Neff, P. Some remarks on the monotonicity of primary matrix functions on the set of symmetric matrices. Arch Appl Mech 2015; 85(12): 1761-1778. · Zbl 1357.47092 · doi:10.1007/s00419-015-1017-4
[6] Lankeit, J, Neff, P, Nakatsukasa, Y. The minimization of matrix logarithms: On a fundamental property of the unitary polar factor. Linear Algebra Appl 2014; 449: 28-42. · Zbl 1302.15009 · doi:10.1016/j.laa.2014.02.012
[7] Neff, P, Nakatsukasa, Y, Fischle, A. A logarithmic minimization property of the unitary polar factor in the spectral and Frobenius norms. SIAM J Matrix Anal Appl 2014; 35(3): 1132-1154. · Zbl 1309.15016 · doi:10.1137/130909949
[8] Neff, P, Lankeit, J, Madeo, A. On Grioli’s minimum property and its relation to Cauchy’s polar decomposition. Int J Eng Sci 2014; 80: 209-217. · Zbl 1423.74041 · doi:10.1016/j.ijengsci.2014.02.026
[9] Rivlin, RS, Ericksen, JL. Stress-deformation relations for isotropic materials. J Ration Mech Anal 1955; 4: 323-425. · Zbl 0064.42004
[10] Hencky, H. Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Z Tech Phys 1928; 9(6): 215-220. · JFM 54.0851.03
[11] Hencky, H. Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern? Z Phys 1929; 55(3-4): 145-155. · JFM 55.1107.01 · doi:10.1007/BF01342409
[12] Hencky, H. Das Superpositionsgesetz eines endlich deformierten relaxationsfähigen elastischen Kontinuums und seine Bedeutung für eine exakte Ableitung der Gleichungen für die zähe Flüssigkeit in der Eulerschen Form. Ann Phys 1929; 394(6): 617-630. · JFM 55.1106.04 · doi:10.1002/andp.19293940602
[13] Hencky, H. The law of elasticity for isotropic and quasi-isotropic substances by finite deformations. J Rheol 1931; 2(2): 169-176. · doi:10.1122/1.2116361
[14] Neff, P, Eidel, B, Martin, RJ. Geometry of logarithmic strain measures in solid mechanics. Arch Ration Mech Anal 2016; 222(2): 507-572. · Zbl 1348.74039 · doi:10.1007/s00205-016-1007-x
[15] Neff, P, Ghiba, ID, Lankeit, J. The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and rank-one convexity. J Elast 2015; 121(2): 143-234. · Zbl 1325.74028 · doi:10.1007/s10659-015-9524-7
[16] Neff, P, Lankeit, J, Ghiba, ID et al. The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers. Z Angew Math Phys 2015; 66(4): 1671-1693. · Zbl 1320.74022 · doi:10.1007/s00033-015-0495-0
[17] Neff, P, Ghiba, ID. The exponentiated Hencky-logarithmic strain energy. Part III: Coupling with idealized isotropic finite strain plasticity. Continuum Mech Thermodyn 2016; 28(1): 477-487. · Zbl 1348.74053 · doi:10.1007/s00161-015-0449-y
[18] Neff, P, Münch, I, Martin, RJ., Rediscovering, G. F. Becker’s early axiomatic deduction of a multiaxial nonlinear stress-strain relation based on logarithmic strain. Math Mech Solids 2016; 21(7): 856-911. · Zbl 1379.74005
[19] Criscione, JC, Humphrey, JD, Douglas, AS et al. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J Mech Phys Solids 2000; 48(12): 2445-2465. · Zbl 0983.74012 · doi:10.1016/S0022-5096(00)00023-5
[20] Flory, PJ. Thermodynamic relations for high elastic materials. Trans Faraday Soc 1961; 57: 829-838. · doi:10.1039/tf9615700829
[21] Charrier, P, Dacorogna, B, Hanouzet, B et al. An existence theorem for slightly compressible materials in nonlinear elasticity. SIAM J Math Anal 1988; 19(1): 70-85. · Zbl 0668.73015 · doi:10.1137/0519005
[22] Murphy, J, Rogerson, G. Modelling slight compressibility for hyperelastic anisotropic materials. J Elast 2018; 131(2): 171-181. · Zbl 1451.74050 · doi:10.1007/s10659-017-9650-5
[23] Sansour, C. On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy. Eur J Mech Solids 2008; 27(1): 28-39. · Zbl 1129.74009 · doi:10.1016/j.euromechsol.2007.04.001
[24] Favrie, N, Gavrilyuk, S, Ndanou, S. A thermodynamically compatible splitting procedure in hyperelasticity. J Comput Phys 2014; 270: 300-324. · Zbl 1349.74344 · doi:10.1016/j.jcp.2014.03.051
[25] Federico, S. Volumetric-distortional decomposition of deformation and elasticity tensor. Math Mech Solids 2010; 15(6): 672-690. · Zbl 1257.74018
[26] Ndanou, S, Favrie, N, Gavrilyuk, S. The piston problem in hyperelasticity with the stored energy in separable form. Math Mech Solids 2017; 22(1): 101-113. · Zbl 1371.74045
[27] Neff, P, Eidel, B, Martin, RJ. The axiomatic deduction of the quadratic Hencky strain energy by Heinrich Hencky. arXiv:14024027, 2014.
[28] Thiel, C, Voss, J, Martin, RJ et al. Do we need Truesdell’s empirical inequalities? On the coaxiality of stress and stretch. Int J Non-Linear Mech. Epub ahead of print 13 February 2019. DOI: 10.1016/j.ijnonlinmec.2019.02.004. · doi:10.1016/j.ijnonlinmec.2019.02.004.
[29] Baker, M, Ericksen, JL. Inequalities restricting the form of the stress-deformation relation for isotropic elastic solids and Reiner-Rivlin fluids. J Washington Acad Sci 1954; 44(2): 33-35.
[30] Shield, RT. Inverse deformation results in finite elasticity. Z Angew Math Phys 1967; 18(4): 490-500. · Zbl 0146.46103 · doi:10.1007/BF01601719
[31] Valanis, KC, Landel, RF. The strain-energy function of a hyperelastic material in terms of the extension ratios. J Appl Phys 1967; 38(7): 2997-3002. · doi:10.1063/1.1710039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.