×

Improved numerical solution of multi-asset option pricing problem: a localized RBF-FD approach. (English) Zbl 1448.91311

Summary: The objective of this work is to present a novel procedure for tackling European multi-asset option problems, which are modeled mathematically in terms of time-dependent parabolic partial differential equations with variable coefficients. To use as low as possible of number computational grid points, a non-uniform grid is generated while a radial basis function-finite difference scheme with the Gaussian function is applied on such a grid to discretize the model as efficiently as possible. To reduce the burdensome for tackling the resulting set of ordinary differential equations, a Krylov method, which is due to the application of exponential matrix function on a vector, is taken into account. The combination of these techniques reduces the computational effort and the elapsed time. Several experiments are brought froward to illustrate the superiority of the new improved approach. In fact, the contributed procedure is capable to tackle even 6D PDEs on a normally-equipped computer quickly and efficiently.

MSC:

91G30 Interest rates, asset pricing, etc. (stochastic models)
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65L04 Numerical methods for stiff equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Achdou, Y.; Pironneau, O., Computational Methods for Option Pricing (2005), SIAM: SIAM Philadelphia · Zbl 1078.91008
[2] Alj, A.; Benjouad, A., Derivatives pricing under beta stochastic volatility model using ADI schemes, Appl Math Sci, Ruse, 12, 825-840 (2018)
[3] Al-Mohy, A. H.; Higham, N. J., Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J Sci Comput, 33, 488-511 (2011) · Zbl 1234.65028
[4] Arismendi, J.; DeGenaro, A., A Monte Carlo multi-asset option pricing approximation for general stochastic processes, Chaos Solitons Fractals, 88, 75-99 (2016) · Zbl 1415.91312
[5] Bayona, V.; Moscoso, M.; Kindelan, M., Gaussian RBF-FD weights and its corresponding local truncation errors, Eng Anal Bound Elem, 36, 1361-1369 (2012) · Zbl 1352.65560
[6] Bollig, E. F.; Flyer, N.; Erlebacher, G., Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs, J Comput Phys, 231, 7133-7151 (2012)
[7] Botchev, M. A., A block Krylov subspace time-exact solution method for linear ordinary differential equation systems, Numer Linear Algebra Appl, 20, 557-574 (2013) · Zbl 1313.65181
[8] Company, R.; Egorova, V. N.; Jódar, L.; Soleymani, F., A mixed derivative terms removing method in multi-asset option pricing problems, Appl Math Lett, 61, 108-114 (2016) · Zbl 1342.35400
[9] Company, R.; Egorova, V. N.; Jódar, L.; Soleymani, F., A local radial basis function method for high-dimensional American option pricing problems, Math Model Anal, 23, 117-138 (2018) · Zbl 1488.65498
[10] Deun, J. V.; Trefethen, L. N., A robust implementation of the Carathéodory—Fejér method for rational approximation, BIT, 51, 1039-1050 (2011) · Zbl 1287.41001
[11] d’Halluin, Y.; Forsyth, P. A.; Labahn, G., A penalty method for American options with jump diffusion processes, Numer Math, 97, 321-352 (2004) · Zbl 1126.91036
[12] Driscoll, T. A.; Hale, N., Rectangular spectral collocation, IMA J Numer Anal, 36, 108-132 (2015) · Zbl 1334.65119
[13] Duffy, D. J., Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach (2006), Wiley: Wiley England · Zbl 1141.91002
[14] Ekedahl E., Hansander E., Lehto E.. Dimension reduction for the Black-Scholes equation, alleviating the curse of dimensionality, report in scientific computing. 2007. Advanced Course, Uppsala University, Sweden.; Ekedahl E., Hansander E., Lehto E.. Dimension reduction for the Black-Scholes equation, alleviating the curse of dimensionality, report in scientific computing. 2007. Advanced Course, Uppsala University, Sweden.
[15] Ehrhardt, M.; Günther, M.; Maten, E. J.W.t., Novel Methods in Computational Finance (2017), Springer: Springer Switzerland · Zbl 1390.91011
[16] Fasshauer, G. E., Meshfree Approximation Methods with MATLAB (2007), World Scientific Publishing Co.: World Scientific Publishing Co. Singapore · Zbl 1123.65001
[17] Ferrara, M.; Pansera, B. A.; Strati, F., On the inception of financial representative bubbles, Mathematics, 5 (2017) · Zbl 1397.91401
[18] Fischer, T. M., On the stability of some algorithms for computing the action of the matrix exponential, Lin Alg Appl, 443, 1-20 (2014) · Zbl 1282.65054
[19] Fornberg, B.; Lehto, E.; Powell, C., Stable calculation of Gaussian—based RBF-FD stencils, Comput Math Appl, 65, 627-637 (2013) · Zbl 1319.65011
[20] González-Gaxiola, O., The Black-Scholes equation and its relation with semigroups of operators, Appl Math Sci, Ruse, 7, 633-640 (2013)
[21] Guillaume, T., An analytically tractable model for pricing multiasset options with correlated jump-diffusion equity processes and a two-factor stochastic yield curve, J Appl Math, 2016 (2016) · Zbl 1435.91186
[22] Haentjens, T., Efficient and stable numerical solution of the Heston—Cox—Ingersoll—Ross partial differential equation by alternating direction implicit finite difference schemes, Int J Comput Math, 90, 2409-2430 (2013) · Zbl 1281.91184
[23] Higham, N. J., The scaling and squaring method for the matrix exponential revisited, SIAM J Matrix Anal Appl, 26, 1179-1193 (2005) · Zbl 1081.65037
[24] Higham, NJ, Functions of matrices: Theory and computation, society for industrial and applied mathematics (2008), Philadelphia, PA: Philadelphia, PA USA · Zbl 1167.15001
[25] Hull, J. C., Options, Futures and other Derivatives, 6th ed (2006), Prentice Hall: Prentice Hall Upper Saddle River, NJ
[26] Jiang, L., Mathematical Modeling and Methods of Option Pricing (2003), World Scientific Publishing Co.: World Scientific Publishing Co. Singapore
[27] Karipova, G.; Magdziarz, M., Pricing of basket options in subdiffusive fractional Black-Scholes model, Chaos Solitons Fractals, 102, 245-253 (2017) · Zbl 1376.91160
[28] Kovalov, P.; Linetsky, V.; Marcozzi, M., Pricing multi-asset American options: A finite element method-of-lines with smooth penalty, J Sci Comput, 33, 209-237 (2007) · Zbl 1210.91133
[29] Kwok, Y. K., Mathematical Models of Financial Derivatives, Second Edition (2008), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 1146.91002
[30] Li, H.; Chen, D.; Zhang, H.; Wang, F.; Ba, D., Nonlinear modeling and dynamic analysis of a hydro-turbine governing system in the process of sudden load increase transient, Mech Syst Signal Process, 80, 414-428 (2016)
[31] Li, H.; Chen, D.; Zhang, H.; Wu, C.; Wang, X., Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing, Applied Energy, 185, 244-253 (2017)
[32] Leentvaar C.C.W.. Pricing multi-asset options with sparse grids. 2008. TU Delft, The Netherlands. PhD thesis; Leentvaar C.C.W.. Pricing multi-asset options with sparse grids. 2008. TU Delft, The Netherlands. PhD thesis
[33] Lord, G. J.; Stone, D., New efficient substepping methods for exponential timestepping, Appl Math Comput, 307, 342-365 (2017) · Zbl 1411.65089
[34] Lötstedt, P.; Persson, J.; von Sydow, L.; Tysk, J., Spacetime adaptive finite difference method for European multi-asset options, Comput Math Appl, 53, 1159-1180 (2007) · Zbl 1154.91462
[35] Mangano, S., Mathematica Cookbook (2010), O’Reilly Media: O’Reilly Media USA
[36] Niesen, J.; Wright, W. M., A Krylov subspace Algorithm for evaluating the φ-functions appearing in exponential integrators, ACM Trans Math Softw, 38, 1-22 (2012) · Zbl 1365.65185
[37] Ramage, A.; von Sydow, L., A multigrid preconditioner for an adaptive Black-Scholes solver, BIT, 51, 217-233 (2011) · Zbl 1211.91251
[38] Saad, Y., Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J Numer Anal, 29, 209228 (1992) · Zbl 0749.65030
[39] Sánchez, C. D.; Sánchez, H. D.; Gonzalez, J. R., Approximate analytical solution for the Black-Scholes equation by method of lines, Contemporary Eng Sci, 10, 1615-1629 (2017)
[40] Sawangtong, P.; Trachoo, K.; Sawangtong, W.; Wiwattanapataphee, B., The analytical solution for the Black-Scholes equation with two assets in the Liouville—Caputo fractional derivative sense, Mathematics, 6 (2018) · Zbl 1418.91536
[41] Sarra, S. A., A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains, Appl Math Comput, 218, 9853-9865 (2012) · Zbl 1245.65144
[42] Shankar, V.; Wright, G. B.; Kirby, R. M.; Fogelson, A. L., A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction—diffusion equations on surfaces, J Sci Comput, 63, 745-768 (2015) · Zbl 1319.65079
[43] Shcherbakov, V., Radial basis function partition of unity operator splitting method for pricing multi-asset American options, BIT, 56, 1401-1423 (2016) · Zbl 1354.91169
[44] Soleymani, F.; Barfeie, M.; Haghani, F. K., Inverse multi-quadric RBF for computing the weights of FD method: Application to American options, Commun Nonlinear Sci Numer Simul, 64, 74-88 (2018) · Zbl 1524.65397
[45] Soleymani, F., Effcient semi-discretization techniques for pricing European and American basket options, Comput Econ, 1-22 (2018)
[46] Song, L., A space-time fractional derivative model for European option pricing with transaction costs in fractal market, Chaos Solitons Fractals, 103, 123-130 (2017) · Zbl 1376.91164
[47] Tal-Ezer, H., On restart and error estimation for Krylov approximation of \(w = f(a) v^*\), SIAM J Sci Comput, 29, 2426-2441 (2007) · Zbl 1154.65320
[48] Tolstykh, I., On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations, Proc 16th IMACS World Congress, 228, 4606-4624 (2000)
[49] von Sydow, L.; Höök, L. J.; Larsson, E.; Lindström, E.; Milovanović, S.; Persson, J.; Shcherbakov, V.; Shpolyanskiy, Y.; Sirén, S.; Toivanen, J.; Waldén, J.; Wiktorsson, M.; Levesley, J.; Li, J.; Oosterlee, C. W.; Ruijter, M. J.; Toropov, A.; Zhao, Y., BENCHOP the BENCHmarking project in option pricing, Int J Comput Math, 92, 2361-2379 (2015) · Zbl 1335.91113
[50] Wright, G. B.; Fornberg, B., Scattered node compact finite difference-type formulas generated from radial basis functions, J Comput Phys, 212, 99-123 (2006) · Zbl 1089.65020
[51] Xu, B.; Chen, D.; Zhang, H.; Zhou, R., Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit, Nonlinear Dyn, 81, 1263-1274 (2015)
[52] Xu, B.; Wang, F.; Chen, D.; Zhang, H., Hamiltonian modeling of multi-hydro-turbine governing systems with sharing common penstock and dynamic analyses under shock load, Energy Conversion and Management, 108, 478-487 (2016)
[53] Xu, B.; Chen, D.; Tolo, S.; Patelli, E.; Jiang, Y., Model validation and stochastic stability of a hydro-turbine governing system under hydraulic excitations, Int J Electrical Power Energy Systems, 95, 156-165 (2018)
[54] Yensiri, S.; Skulkhu, R. J., An investigation of radial basis function-finite difference (RBF-FD) method for numerical solution of elliptic partial differential equations, Mathematics, 5, 1-14 (2017) · Zbl 1395.65121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.