×

Composite honeycomb sandwich columns under in-plane compression: optimal geometrical design and three-dimensional failure mechanism maps. (English) Zbl 1479.74104

Summary: In this paper, three-dimensional failure mechanism maps are developed to investigate the in-plane compressive characteristics of all-composite honeycomb sandwich columns and optimize their load-weight efficiency. Analytical models are derived based on five possible failure modes, including shear macro-buckling, intracellular dimpling, face wrinkling, face fracture and debonding. The dominant failure mode can be determined by three dimensionless geometrical parameters, i.e., the length-height ratio of the sandwich column, the height ratio of face and core, and the relative density of honeycomb core. A series of three-dimensional failure mechanism maps are constructed based on the fiber orientations in the face sheet and honeycomb core. It is observed that failure mode transforms with dimensionless geometrical parameters in a spatial region. A typical three-dimensional failure mechanism map is experimentally validated. Sectional views in different directions are used to locate the boundaries of failure modes. All-composite honeycomb sandwich columns are designed and fabricated using the tailor-folding method. In-plane compressive experiments are carried out to verify the analytical models and three-dimensional failure mechanism map. The experimental results agree well with analytical predictions. Optimal geometrical design is performed to obtain the geometrical relations of honeycomb sandwich columns with the highest load-weight efficiency under in-plane compression. The novelty of this work lies in broadening the failure mechanism map to spatial region and optimal geometrical design.

MSC:

74P05 Compliance or weight optimization in solid mechanics
74E30 Composite and mixture properties
74R99 Fracture and damage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alia, R. A.; Zhou, J.; Guan, Z. W.; Qin, Q.; Duan, Y.; Cantwell, W. J., The effect of loading rate on the compression properties of carbon fibre-reinforced epoxy honeycomb structures, J. Compos. Mater., 1-12 (2020), 0(0)
[2] Allen, H. G., Analysis and Design of Structural Sandwich Panels (1969), Pergamon: Pergamon Oxford
[3] Andrews, E. W.; Moussa, N. A., Failure mode maps for composite sandwich panels subjected to air blast loading, Int. J. Impact Eng., 36, 418-425 (2009)
[4] Chen, Y.; Ye, L.; Fu, K.; Han, X., Transition from buckling to progressive failure during quasi-static in-plane crushing of CF/EP composite sandwich panels, Compos. Sci. Technol., 168, 133-144 (2018)
[5] Côté, F.; Russell, B. P.; Deshpande, V. S.; Fleck, N. A., The through-thickness compressive strength of a composite sandwich panel with a hierarchical square honeycomb sandwich core, ASME J. Appl. Mech., 76, 6 (2009)
[6] Du, B.; Chen, L.; Tan, J.; Zhou, H.; Zhao, Y.; Wu, W.; Li, W.; Fang, D.; Chen, L., Fabrication and bending behavior of thermoplastic composite curved corrugated sandwich beam with interface enhancement, Int. J. Mech. Sci., 149, 101-111 (2018)
[7] Du, Y.; Song, C.; Xiong, J.; Wu, L., Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami, Compos. Sci. Technol., 174, 94-105 (2019)
[8] Fan, H.; Yang, L.; Sun, F.; Fang, D., Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites, Compos. Part A-APPL S., 52, 118-125 (2013)
[9] Huang, W.; Zhang, W.; Li, D.; Ye, N.; Xie, W.; Ren, P., Dynamic failure of honeycomb-core sandwich structures subjected to underwater impulsive loads, Eur. J. Mech. Solid., 60, 39-51 (2016)
[10] Jiang, S.; Sun, F.; Zhang, X.; Fan, H., Interlocking orthogrid: an efficient way to construct lightweight lattice-core sandwich composite structure, Compos. Struct., 176, 55-71 (2017)
[11] Jones, R. M., Mechanics of Composite Materials (1999), Taylor & Francis Press, the United States of America
[12] Khalili, S. M.R.; Hosseini, M.; Malekzadeh Fard, K.; Forooghy, S. H., Static indentation response of an in-plane prestressed composite sandwich plate subjected to a rigid blunted indenter, Eur. J. Mech. Solid., 38, 59-69 (2013) · Zbl 1347.74072
[13] Kim, W. C.; Dharan, C. K.H., Facesheet debonding criteria for composite sandwich panels under in-plane compression, Eng. Fract. Mech., 42, 4, 643-652 (1992)
[14] Li, Y.; Zhou, M.; Wang, T.; Zhang, Y., Nonlinear primary resonance with 1:3:6 internal resonances of the symmetric rectangular honeycomb sandwich panels, Eur. J. Mech. Solid., 80, 103908 (2020) · Zbl 1476.74057
[15] Liu, B. G.; Wadley, H. N.G.; Deshpande, V. S., Failure mechanism maps for ultra-high molecular weight polyethylene fibre composite beams impacted by blunt projectiles, Int. J. Solid Struct., 178-179, 1, 180-198 (2019)
[16] Liu, J.; Liu, J.; Mei, J.; Huang, W., Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores, Compos. Sci. Technol., 159, 87-102 (2018)
[17] Liu, J.; Li, C.; Deng, S.; Liu, J.; Huang, W., The edgewise compressive behavior and failure mechanism of the composite Y-frame core sandwich column, Polym. Test., 81, 106188 (2020)
[18] Liu, T.; Deng, Z. C.; Lu, T. J., Bi-functional optimization of actively cooled, pressurized hollow sandwich cylinders with prismatic cores, J. Mech. Phys. Solid., 55, 12, 2565-2602 (2007) · Zbl 1159.74395
[19] Mao, R.; Lu, G.; Wang, Z.; Zhao, L., Large deflection behavior of circular sandwich plates with metal foam-core, Eur. J. Mech. Solid., 55, 57-66 (2016) · Zbl 1406.74445
[20] Nezami, M.; Gholami, B., Optimal locations of magnetorheological fluid pockets embedded in an elastically supported honeycomb sandwich beams for supersonic flutter suppression, Eur. J. Mech. Solid., 74, 81-95 (2019) · Zbl 1406.74203
[21] Niu, B.; Wang, B., Directional mechanical properties and wave propagation directionality of Kagome honeycomb structures, Eur. J. Mech. Solid., 57, 45-58 (2016) · Zbl 1406.74359
[22] Pan, Y.; Zhong, Z., A nonlinear constitutive model of unidirectional natural fiber reinforced composites considering moisture absorption, J. Mech. Phys. Solid., 69, 132-142 (2014) · Zbl 1328.74026
[23] Paul, B.; Jack, D.; Sam, D., Fabrication and thermo-optical properties of the MLS composite primary reflector, (Proceedings of the SPIE. Denver: SPIE, vol. 3786 (1999)), 200-205
[24] Phung-Van, P.; Thai, C. H.; Abdel-Wahab, M.; Nguyen-Xuan, H., Optimal design of FG sandwich nanoplates using size-dependent isogeometric analysis, Mech. Mater., 142, 103277 (2020)
[25] Pingle, S. M.; Fleck, N. A.; Deshpande, V. S.; Wadley, H. N.G., Collapse mechanism maps for the hollow pyramidal core of a sandwich panel under transverse shear, Int. J. Solid Struct., 48, 3417-3430 (2011)
[26] Qin, Q.; Wang, T. J., A theoretical analysis of the dynamic response of metallic sandwich beam under impulsive loading, Eur. J. Mech. Solid., 28, 1014-1025 (2009) · Zbl 1176.74105
[27] Qin, Q.; Yuan, C.; Zhang, J.; Wang, T. J., Large deflection response of rectangular metal sandwich plates subjected to blast loading, Eur. J. Mech. Solid., 47, 14-22 (2014)
[28] Rajaneesh, A.; Sridhar, I.; Rajendran, S., Failure mode maps for circular composites sandwich plates under bending, Int. J. Mech. Sci., 83, 184-195 (2014)
[29] Russell, B. P.; Liu, T.; Fleck, N. A.; Deshpande, V. S., Quasi-Static three-point bending of carbon fiber sandwich beams with square honeycomb cores, ASME J. Appl. Mech., 78, 3 (2011)
[30] Shen, H.; Zhu, Z. H., Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations, Eur. J. Mech. Solid., 35, 10-21 (2012) · Zbl 1349.74146
[31] Sun, F.; Lai, C.; Fan, H., Failure mode maps for composite anisogrid lattice sandwich cylinders under fundamental loads, Compos. Sci. Technol., 152, 149-158 (2017)
[32] Timoshenko, S. P.; Gere, J. M., Theory of Elastic Stability (2009), Dover Publications, -13: 978-0486472072
[33] Utsunomiya, S.; Kamiya, T.; Shimizu, R., CFRP composite mirrors for space telescopes and their micro-dimensional stability, (Proceedings of the SPIE. Denver: SPIE (2010)), 7739
[34] Vitale, J.; Francucci, G.; Xiong, J.; Stocchi, A., Failure mode maps of natural and synthetic fiber reinforced composite sandwich panels, Compos. Part A-appl. S., 94, 217-225 (2017)
[35] Wei, K.; Wang, K.; Cheng, X.; Peng, Y.; Li, M.; Yang, X., Structural and thermal analysis of integrated thermal protection systems with C/SiC composite cellular core sandwich panels, Appl. Therm. Eng., 131, 209-220 (2018)
[36] Wei, X.; Li, D.; Xiong, J., Fabrication and mechanical behaviors of an all-composite sandwich structure with a hexagon honeycomb core based on the tailor-folding approach, Compos. Sci. Technol., 184, 107878 (2019)
[37] Wei, X.; Xiong, J.; Wang, J.; Xu, W., New advances in fiber-reinforced composite honeycomb materials, Sci. China Technol. Sci., 63, 1348-1370 (2020)
[38] Wei, X.; Wu, Q.; Gao, Y.; Xiong, J., Bending characteristics of all-composite hexagon honeycomb sandwich beams: experimental tests and a three-dimensional failure mechanism map, Mech. Mater., 148, 103401 (2020)
[39] Wu, Q.; Gao, Y.; Wei, X.; Davood, M.; Ma, L.; Ashkan, V.; Xiong, J., Mechanical properties and failure mechanisms of sandwich panels with ultra-lightweight three-dimensional hierarchical lattice cores, Int. J. Solid Struct., 132-133, 171-187 (2018)
[40] Wu, Q.; Vaziri, A.; Asl, M. E.; Ghosh, R.; Gao, Y.; Wei, X.; Li Ma, L.; Xiong, J.; Wu, L., Lattice materials with pyramidal hierarchy: systematic analysis and three dimensional failure mechanism maps, J. Mech. Phys. Solid., 125, 112-144 (2019)
[41] Xin, F. X.; Lu, T. J., Analytical modeling of fluid loaded orthogonally rib-stiffened sandwich structures: sound transmission, J. Mech. Phys. Solid., 58, 9, 1374-1396 (2010) · Zbl 1431.76114
[42] Yuan, W.; Song, H.; Huang, C., Failure maps and optimal design of metallic sandwich panels with truss cores subjected to thermal loading, Int. J. Mech. Sci., 115-116, 56-67 (2016)
[43] Zhang, J.; Qin, Q.; Ai, W.; Li, H.; Wang, T. J., The failure behavior of geometrically asymmetric metal foam core sandwich beams under three-point bending, ASME J. Appl. Mech., 81, 7 (2014)
[44] Zhou, J.; Wang, Y.; Liu, J.; Liu, J.; Mei, J.; Huang, W.; Tang, Y., Temperature effects on the compressive properties and failure mechanisms of composite sandwich panel with Y-shaped cores, Compos. Part A-APPL S., 114, 72-85 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.