×

Data-driven discrete terminal sliding mode decoupling control method with prescribed performance. (English) Zbl 1470.93038

Summary: This paper proposes a data-driven terminal sliding mode decoupling controller with prescribed performance for a class of discrete-time multi-input multi-output systems in the presence of external disturbances and uncertainties. First, utilizing a discrete-time extended state observer and a compact form dynamic linearization data model, we derive a new data-driven method and establish the relationship between the input and output signals of controlled plant. Moreover, the disturbances, uncertainties, and couplings are suppressed owing to the application of the terminal sliding mode technique. Combined with the principle of prescribed performance control, the terminal sliding mode law with prescribed performance is derived. With the proposed data-driven method, the tracking error is lower, and the decoupling ability is improved. Furthermore, the stability of the control system is proven. Finally, a simulation is conducted on a three-tank system to demonstrate the effectiveness of the proposed scheme.

MSC:

93B12 Variable structure systems
93C55 Discrete-time control/observation systems
93C35 Multivariable systems, multidimensional control systems
93C10 Nonlinear systems in control theory
93B53 Observers
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yang, Z. Z.; Sun, J. J.; Zha, X. M.; Tang, Y., Power decoupling control for capacitance reduction in cascaded-H-bridge-converter-based regenerative motor drive systems, IEEE Trans. Ind. Electron., 34, 1, 538-549 (2018)
[2] Zhang, H.; Zhao, W. Z., Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle, Mech. Syst. Signal Process., 101, 2, 389-404 (2018)
[3] Miskovic, L.; Karimi, A.; Bonvin, D.; Gevers, M., Correlation-based tuning of decoupling multivariable controllers, Automatica, 43, 9, 1481-1494 (2017) · Zbl 1128.93349
[4] Li, Y. Q.; Hou, Z. S.; Feng, Y. J.; Chi, R. H., Data-driven approximate value iterationwith optimality error bound analysis, Automatica, 78, 3, 79-87 (2017) · Zbl 1357.93080
[5] Chi, R. H.; Hou, Z. S.; Jin, S. T.; Wang, D. W.; Chien, C. J., Enhanced data-driven optimal terminal ILC using current iteration control knowledge, IEEE Trans. Neural Netw. Learn. Syst., 26, 11, 2939-2948 (2017)
[6] Chi, R. H.; Liu, X. H.; Zhang, R. K.; Hou, Z. S.; Huang, B., Constrained data-driven optimal iterative learning control, J. Process Control, 55, 7, 10-29 (2017)
[7] Hou, Z. S.; Jin, S. T., Model Free Adaptive Control: Theory and Applications (2013), CRC Press, Taylor and Francis Group
[8] Hou, Z. S.; Jin, S. T., A novel data-driven control approach for a class of discrete-time nonlinear systems, IEEE Trans. Control Syst. Technol., 19, 6, 1549-1558 (2011)
[9] Hou, Z. S.; Jin, S. T., Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems, IEEE Trans. Neural Netw., 22, 12, 2173-2188 (2011)
[10] Hou, Z. S.; Chi, R. H.; Gao, H. J., An overview of dynamic- linearization-based data-driven control and applications, IEEE Trans. Ind. Electron., 64, 5, 4076-4090 (2017)
[11] Hou, M. D.; Wang, Y. S., A model-free adaptive integral terminal sliding mode control method, Control Decis., 33, 9, 1591-1597 (2018) · Zbl 1424.93028
[12] Hou, M. D.; Wang, Y. S., Data-driven trajectory tracking sliding mode constraint control for wheeled mobile robot, Control Decis., 35, 6, 1353-1360 (2020)
[13] Hou, M. D.; Wang, Y. S., An adaptive integral sliding mode control for a class of nonlinear large-lag systems, Control Theory Appl., 36, 7, 1182-1188 (2019) · Zbl 1449.93019
[14] Wang, Y. S.; Hou, M. D., Model-free adaptive integral terminal sliding mode predictive control for a class of discrete-time nonlinear systems, ISA Trans., 93, 209-217 (2019)
[15] Wang, X. F.; Li, X.; Wang, J. H.; Fang, X. K.; Zhu, X. F., Data driven model-free adaptive sliding mode control for the multi degree-of-freedom robotic exoskeleton, Inf. Sci., 327, 246-257 (2016) · Zbl 1386.93071
[16] Xu, D. Z.; Shi, Y.; Ji, Z. C., Model free adaptive discrete-time integral sliding mode constrained control for autonomous 4WMV parking systems, IEEE Trans. Ind. Electron., 65, 1, 834-843 (2018)
[17] Treesatayapun, C., Discrete-time adaptive controller based on non-switch reaching condition and compact system dynamic estimator, J. Frankl. Inst., 354, 15, 6783-6804 (2017) · Zbl 1373.93183
[18] Acary, V.; Brogliato, B.; Orlov, Y. V., Chattering-free digital sliding mode control with state observer and disturbance rejection, IEEE Trans. Autom. Control, 57, 5, 1087-1101 (2017) · Zbl 1369.93122
[19] Sarpturk, S. Z.; Istefanopulos, Y.; Kaynak, O., On the stability of discrete-time sliding mode control systems, IEEE Trans. Autom. Control, 32, 10, 930-932 (1987) · Zbl 0624.93054
[20] Xi, Z.; Hesketh, T., On discrete time terminal sliding mode control for nonlinear systems with uncertainty, (Proceedings of the 2010 American Control Conference. Proceedings of the 2010 American Control Conference, Baltimore, MD, USA (2010)), 980-984
[21] Li, S. H.; Du, H. B.; Yu, X. H., Discrete-time terminal sliding mode control systems based on euler’s discretization, IEEE Trans. Autom. Control, 59, 2, 546-552 (2014) · Zbl 1360.93156
[22] Xu, Q. S., Piezoelectric nanopositioning control using second-order discrete-time terminal sliding-mode strategy, IEEE Trans. Ind. Electron., 62, 12, 7738-7748 (2015)
[23] Xu, Q. S.; Cao, Z., Piezoelectric positioning control with output-based discrete-time terminal sliding mode control, IET Control Theory Appl., 11, 5, 694-702 (2017)
[24] Wang, Y. Y.; Yan, F.; Chen, J. W.; Ju, F.; Chen, B., A new adaptive time-delay control scheme for cable-driven manipulators, IEEE Trans. Ind. Inf., 15, 6, 3469-3481 (2018)
[25] Wang, Y. Y.; Liu, L. F.; Wang, D.; Ju, F.; Chen, B., Time-delay control using a novel nonlinear adaptive law for accurate trajectory tracking of cable-driven robots, IEEE Trans. Ind. Inf., 16, 8, 5234-5243 (2019)
[26] Wang, Y. Y.; Li, S. Z.; Wang, D.; Ju, F.; Chen, B.; Wu, H. T., Adaptive time-delay control for cable-driven manipulators with enhanced nonsingular fast terminal sliding mode, IEEE Trans. Ind. Electron., 68, 3, 2356-2367 (2020)
[27] Wang, W. H.; Hou, Z. S., New adaptive quasi-sliding mode control for nonlinear discrete-time systems, J. Syst. Eng. Electron., 19, 1, 154-160 (2008) · Zbl 1232.93014
[28] Hou, Z. S.; Wang, W. H.; Jin, S. T., Adaptive quasi-sliding-mode control for a class of nonlinear discrete-time systems, Control Theory Appl., 26, 5, 505-509 (2009) · Zbl 1212.93035
[29] Zheng, Q.; Chen, Z.; Gao, Z., A practical approach to disturbance decoupling control, Control Eng. Pract., 17, 9, 1016-1025 (2009)
[30] Kwon, S. J.; Chung, W. K., A discrete-time design and analysis of perturbation observer for motion control applications, IEEE Trans. Control Syst. Technol., 11, 3, 399-407 (2003)
[31] Schrijver, E.; Dijk, J.van., Disturbance observers for rigid mechanical systems: equivalence, stability, and design, Trans. ASME. J. Dyn. Syst. Meas. Control, 124, 4, 539-548 (2003)
[32] He, D. K.; Gao, F. X.; Yang, L.; Wu, W., Improved adaptive quasi-sliding mode decoupling control for a class of unknown MIMO nonlinear discrete-time systems, Control Decis., 31, 5, 783-789 (2016) · Zbl 1363.93052
[33] Weng, Y. P.; Gao, X. W.; Liu, X. M., Data-driven second-order sliding-mode decoupling control for non-affine nonlinear discrete-time system, Control Theory Appl., 31, 3, 309-318 (2014) · Zbl 1313.93035
[34] Weng, Y. P.; Gao, X. W., Adaptive sliding mode decoupling control with data-driven sliding surface for unknown MIMO nonlinear discrete systems, Circ. Syst. Signal Pr., 36, 3, 969-997 (2017) · Zbl 1368.93090
[35] Weng, Y. P.; Gao, X. W., Data-driven robust output tracking control for gas collector pressure system of coke ovens, IEEE Trans. Ind. Electron., 64, 5, 4187-4198 (2017)
[36] Weng, Y. P.; Gao, X. W., Data-driven sliding mode control of unknown MIMO nonlinear discrete-time systems with moving PID sliding surface, J. Frankl. Inst., 354, 15, 6463-6502 (2017) · Zbl 1373.93081
[37] Bechlioulis, C. P.; Rovithakis, G. A., Robust adaptive control of feedback linearizable MIMO nonlinear systemswith prescribed performance, IEEE Trans. Autom. Control, 53, 9, 2090-2099 (2008) · Zbl 1367.93298
[38] Bechlioulis, C. P.; Rovithakis, G. A., Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems, Automatica, 45, 2, 532-538 (2009) · Zbl 1158.93325
[39] Bechlioulis, C. P.; Rovithakis, G. A., Robust partial-state feedback prescribed performance control of cascade systems with unknown nonlinearities, IEEE Trans. Autom. Control, 56, 9, 2224-2230 (2011) · Zbl 1368.93216
[40] Zhai, D.; Xi, C. J.; An, L. W.; Dong, J. X.; Zhang, Q. L., Prescribed performance switched adaptive dynamic surface control of switched nonlinear systems with average dwell time, IEEE Trans. Syst. Man Cybern. Syst., 47, 7, 1257-1269 (2017)
[41] Wang, W.; Wang, D.; Peng, Z. H.; Li, T. S., Prescribed performance consensus of uncertain nonlinear strict-feedback systems with unknown control directions, IEEE Trans. Syst. Man Cybern. Syst., 46, 9, 1279-1286 (2016)
[42] Nguyen, M. L.; Chen, X., Discrete time quasi sliding mode control for piezo-actuated positioning systems: a prescribed performance control approach, IFAC-PapersOnLine, 50, 1, 5121-5126 (2017)
[43] Nguyen, M. L.; Chen, X.; Yang, F., discrete-time quasi-sliding- mode control with prescribed performance function and its application to piezo-actuated positioning systems, IEEE Trans. Ind. Electron., 65, 1, 942-950 (2018)
[44] Liu, D.; Yang, G. H., Data-driven adaptive sliding mode control of nonlinear discrete-time systems with prescribed performance, IEEE Trans. Syst. Man Cybern. Syst., 49, 12, 2598-2604 (2019)
[45] Hou, M. D.; Wang, Y. S., Data-driven adaptive terminal sliding mode control with prescribed performance, Asian J. Control, 1-12 (2019)
[46] Liu, D.; Yang, G. H., Performance-based data-driven model-free adaptive sliding mode control for a class of discrete-time nonlinear processes, J. Process Control, 68, 186-194 (2018)
[47] Liu, D.; Yang, G. H., Prescribed performance model-free adaptive integral sliding mode control for discrete-time nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst., 30, 7, 2222-2230 (2018)
[48] Treesatayapun, C., Prescribed performance of discrete-time controller based on the dynamic equivalent data model, Appl. Math. Model., 78, 366-382 (2020) · Zbl 1481.93063
[49] Treesatayapun, C., Prescribed performance controller with an equivalent model for a class of unknown nonlinear discrete-time systems, Int. J. Syst. Sci., 1-16 (2020)
[50] Zhang, W. M.; Xu, Z. D.; Jiang, B.; Pan, T. L., Prescribed performance based model-free adaptive sliding mode constrained control for a class of nonlinear systems, Inf. Sci., 544, 97-116 (2021) · Zbl 1478.93108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.