×

Efficient solution of symmetric eigenvalue problems from families of coupled systems. (English) Zbl 1420.65048

Summary: Efficient solution of the lowest eigenmodes is studied for a family of related eigenvalue problems with common \(2\times 2\) block structure. It is assumed that the upper diagonal block varies between different versions while the lower diagonal block and the range of the coupling blocks remain unchanged. Such block structure naturally arises when studying the effect of a subsystem to the eigenmodes of the full system. The proposed method is based on interpolation of the resolvent function after some of its singularities have been removed by a spectral projection. Singular value decomposition can be used to further reduce the dimension of the computational problem. Error analysis of the method indicates exponential convergence with respect to the number of interpolation points. Theoretical results are illustrated by two numerical examples related to finite element discretization of the Laplace operator.

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] D. Aalto, O. Aaltonen, R.-P. Happonen, P. Jääsaari, A. Kivelä, J. Kuortti, J.-M. Luukinen, J. Malinen, T. Murtola, R. Parkkola, J. Saunavaara, T. Soukka, and M. Vainio, Large scale data acquisition of simultaneous MRI and speech, Appl. Acoust., 83 (2014), pp. 64-75.
[2] I. Babuska and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp., 52 (1989), pp. 275-297. · Zbl 0675.65108
[3] M. C. C. Bampton and R. R. Craig, Coupling of substructures for dynamic analyses, AIAA J., 6 (1968), pp. 1313-1319. · Zbl 0159.56202
[4] C. Bekas and Y. Saad, Computation of smallest eigenvalues using spectral Schur complements, SIAM J. Sci. Comput., 27 (2005), pp. 458-481. · Zbl 1091.65035
[5] J. Bennighof and R. Lehoucq, An automated multilevel substructuring method for eigenspace computation in linear elastodynamics, SIAM J. Sci. Comput., 25 (2004), pp. 2084-2106. · Zbl 1133.65304
[6] D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer., 19 (2010), pp. 1-120. · Zbl 1242.65110
[7] S.-H. Boo, J.-G. Kim, and P.-S. Lee, Error estimation for the automated multi-level substructuring method, Internat. J. Numer. Methods Engrg., 106 (2016), pp. 927-950. · Zbl 1352.74329
[8] A. Böttcher and I. Spitkovsky, A gentle guide to the basics of two projections theory, Linear Algebra Appl., 432 (2010), pp. 1412-1459. · Zbl 1189.47073
[9] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, Cambridge, 2007. · Zbl 1118.65117
[10] L. Brutman, On the Lebesgue function for polynomial interpolation, SIAM J. Numer. Anal., 15 (1978), pp. 694-704. · Zbl 0391.41002
[11] A. G. Buchan, C. C. Pain, F. Fang, and I. M. Navon, A POD reduced-order model for eigenvalue problems with application to reactor physics, Internat. J. Numer. Methods Engrg., 95 (2013), pp. 1011-1032. · Zbl 1352.82018
[12] F. Chatelin and M. J. Lemordant, La méthode de Rayleigh-Ritz appliquée à des opérateurs différentielles elliptiques–ordres de convergence des éléments propres, Numer. Math., 23 (1975), pp. 215-222. · Zbl 0295.65060
[13] K. Elssel and H. Voss, An a priori bound for automated multilevel substructuring, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 386-397. · Zbl 1116.65044
[14] T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems, Math. Comp., 35 (1980), pp. 1251-1268. · Zbl 0468.65021
[15] F. Bourquin, Component mode synthesis and eigenvalues of second order operators: Discretization and algorithm, ESAIM Math. Model. Numer. Anal., 26 (1992), pp. 385-423. · Zbl 0765.65100
[16] N. Gräbner, V. Mehrmann, S. Quraishi, C. Schröder, and U. Wagner, Numerical methods for parametric model reduction in the simulation of disk brake squeal, ZAMM Z. Angew. Math. Mech., 96 (2016), pp. 1388-1405.
[17] A. Hannukainen, T. Lukkari, J. Malinen, and P. Palo, Vowel formants from the wave equation, J. Acoust. Soc. Am., 122 (2007), pp. EL1-EL7.
[18] W. C. Hurty, Vibrations of structural systems by component mode synthesis, J. Engrg. Mech. Div., 86 (1960), pp. 51-70.
[19] I. Fumagalli, A. Manzoni, N. Parolini, and M. Verani, Reduced basis approximation and a posteriori error estimates for parametrized elliptic eigenvalue problems, ESAIM Math. Model. Numer. Anal., 50 (2016), pp. 1857-1885. · Zbl 1355.65149
[20] V. Kalantzis, Y. Xi, and Y. Saad, Beyond automated multilevel substructuring: Domain decomposition with rational filtering, SIAM J. Sci. Comput., 40 (2018), pp. C477-C502. · Zbl 1394.65030
[21] J.-G. Kim, S.-H. Boo, and P.-S. Lee, An enhanced amls method and its performance, Comput. Methods Appl. Mech. Engrg., 287 (2015), pp. 90-111. · Zbl 1425.65116
[22] J.-G. Kim, K.-H. Lee, and P.-S. Lee, Estimating relative eigenvalue errors in the Craig-Bampton method, Comput. Struct., 139 (2014), p. 54-64.
[23] J.-G. Kim and P.-S. Lee, An enhanced Craig-Bampton method, Internat. J. Numer. Methods Engrg., 103 (2015), pp. 79-93. · Zbl 1352.74378
[24] J.-G. Kim, Y.-J. Park, G. H. Lee, and D.-N. Kim, A general model reduction with primal assembly in structural dynamics, Comput. Methods Appl. Mech. Engrg., 324 (2017), pp. 1-28. · Zbl 1439.74435
[25] A. V. Knyazev and J. E. Osborn, New a priori FEM error estimates for eigenvalues, SIAM J. Numer. Anal., 43 (2006), pp. 2647-2667. · Zbl 1111.65100
[26] J. Kuortti, J. Malinen, and A. Ojalammi, Post-processing speech recordings during MRI, Biomed. Signal Process. Control, 39 (2018), pp. 11-22.
[27] A. Ojalammi and J. Malinen, Automated segmentation of upper airways from MRI: Vocal tract geometry extraction, in Proceedings of BIOIMAGING 2017, Porto, Portugal, 2017, pp. 77-84.
[28] K. Park and Y. H. Park, Partitioned component mode synthesis via a flexibility approach, AIAA J., 42 (2004), pp. 1236-1245.
[29] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1998.
[30] J. Roe, Elliptic Operators, Topology, and Asymptotic Methods, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, London, 1988.
[31] Turbosquid, Head + Morph Targets \(3\) D Model, http://www.turbosquid.com/3d-models/3d-model-male-head-morph-targets/261694 (2005).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.