×

Data-driven reduced order modeling of poroelasticity of heterogeneous media based on a discontinuous Galerkin approximation. (English) Zbl 1480.65260

Summary: A simulation tool capable of speeding up the calculation for linear poroelasticity problems in heterogeneous porous media is of large practical interest for engineers, in particular, to effectively perform sensitivity analyses, uncertainty quantification, optimization, or control operations on the fluid pressure and bulk deformation fields. Towards this goal, we present here a non-intrusive model reduction framework using proper orthogonal decomposition (POD) and neural networks based on the usual offline-online paradigm. As the conductivity of porous media can be highly heterogeneous and span several orders of magnitude, we utilize the interior penalty discontinuous Galerkin (DG) method as a full order solver to handle discontinuity and ensure local mass conservation during the offline stage. We then use POD as a data compression tool and compare the nested POD technique, in which time and uncertain parameter domains are compressed consecutively, to the classical POD method in which all domains are compressed simultaneously. The neural networks are finally trained to map the set of uncertain parameters, which could correspond to material properties, boundary conditions, or geometric characteristics, to the collection of coefficients calculated from an \(L^2\) projection over the reduced basis. We then perform a non-intrusive evaluation of the neural networks to obtain coefficients corresponding to new values of the uncertain parameters during the online stage. We show that our framework provides reasonable approximations of the DG solution, but it is significantly faster. Moreover, the reduced order framework can capture sharp discontinuities of both displacement and pressure fields resulting from the heterogeneity in the media conductivity, which is generally challenging for intrusive reduced order methods. The sources of error are presented, showing that the nested POD technique is computationally advantageous and still provides comparable accuracy to the classical POD method. We also explore the effect of different choices of the hyperparameters of the neural network on the framework performance.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
86A05 Hydrology, hydrography, oceanography
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ahmed, S.; Rahman, S.; San, O.; Rasheed, A.; Navon, I., Memory embedded non-intrusive reduced order modeling of non-ergodic flows, Phys. Fluids, 31, 12, 126602 (2019)
[2] Akinfenwa, O.; Jator, S.; Yao, N., Continuous block backward differentiation formula for solving stiff ordinary differential equations, Comput. Math. Appl., 65, 7, 996-1005 (2013) · Zbl 1266.65120
[3] Alla, A.; Kutz, N., Randomized model order reduction, Adv. Comput. Math., 45, 3, 1251-1271 (2019) · Zbl 1418.65193
[4] Alnaes, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.; Wells, G., The FEniCS project version 1.5, Arch. Numer. Softw., 3, 100 (2015)
[5] Audouze, C.; De Vuyst, F.; Nair, PB, Reduced-order modeling of parameterized pdes using time-space-parameter principal component analysis, Int. J. Numer. Meth. Eng., 80, 8, 1025-1057 (2009) · Zbl 1176.76059
[6] Audouze, C.; De Vuyst, F.; Nair, PB, Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations, Numer. Methods Partial Differ. Equ., 29, 5, 1587-1628 (2013) · Zbl 1274.65270
[7] Baker, R.; Yarranton, H.; Jensen, J., Practical Reservoir Engineering and Characterization (2015), Oxford: Gulf Professional Publishing, Oxford
[8] Balabanov, O.; Nouy, A., Randomized linear algebra for model reduction. Part i: Galerkin methods and error estimation, Adv. Comput. Math., 45, 5, 2969-3019 (2019) · Zbl 1464.65169
[9] Balay, S., Abhyankar, S., Adams, M., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., May, D., McInnes, L., Mills, R., Munson, T., Rupp, K., Sanan, P., Smith, B., Zampini, S., Zhang, H., Zhang, H.: PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.10, Argonne National Laboratory (2018). http://www.mcs.anl.gov/petsc
[10] Ballarin, F., D’amario, A., Perotto, S., Rozza, G.: A POD-selective inverse distance weighting method for fast parametrized shape morphing. Int. J. Numer. Meth. Eng. 117(8), 860-884 (2019)
[11] Ballarin, F.; Faggiano, E.; Ippolito, S.; Manzoni, A.; Quarteroni, A.; Rozza, G.; Scrofani, R., Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a pod-galerkin method and a vascular shape parametrization, J. Comput. Phys., 315, 609-628 (2016) · Zbl 1349.76173
[12] Ballarin, F., Rozza, G., et al.: RBniCS - reduced order modelling in FEniCS. https://www.rbnicsproject.org/ (2015)
[13] Ballarin, F., Rozza, G., et al.: multiphenics - easy prototyping of multiphysics problems in FEniCS (2019). https://mathlab.sissa.it/multiphenics
[14] Biot, M., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[15] Biot, M.; Willis, D., The elastic coefficients of the theory of consolidation, J. Appl. Mech., 15, 594-601 (1957)
[16] Borja, R.; Choo, J., Cam-Clay plasticity, Part VIII: A constitutive framework for porous materials with evolving internal structure, Comput. Methods Appl. Mech. Eng., 309, 653-679 (2016) · Zbl 1439.74059
[17] Bouklas, N., Landis, C., Huang, R.: Effect of solvent diffusion on crack-tip fields and driving force for fracture of hydrogels. J. Appl. Mech. 82(8) (2015) · Zbl 1349.74130
[18] Bouklas, N.; Landis, C.; Huang, R., A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels, J. Mech. Phys. Solids, 79, 21-43 (2015) · Zbl 1349.74130
[19] Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. pp. 808-817 (2000)
[20] Chen, Z.: Reservoir simulation: mathematical techniques in oil recovery, vol. 77. Siam (2007) · Zbl 1167.86001
[21] Choo, J.; Lee, S., Enriched Galerkin finite elements for coupled poromechanics with local mass conservation, Comput. Methods Appl. Mech. Eng., 341, 311-332 (2018) · Zbl 1440.74120
[22] Choo, J.; Sun, W., Cracking and damage from crystallization in pores: coupled chemo-hydro-mechanics and phase-field modeling, Comput. Methods Appl. Mech. Eng., 335, 347-349 (2018) · Zbl 1440.74358
[23] Choo, J.; White, J.; Borja, R., Hydromechanical modeling of unsaturated flow in double porosity media, Int. J. Geomech., 16, 6, D4016002 (2016)
[24] Cleary, J.; Witten, I., Data compression using adaptive coding and partial string matching, IEEE Trans. Commun., 32, 4, 396-402 (1984)
[25] Coussy, O., Poromechanics (2004), New York: Wiley, New York · Zbl 1120.74447
[26] DeCaria, V.; Iliescu, T.; Layton, W.; McLaughlin, M.; Schneier, M., An artificial compression reduced order model, SIAM J. Numer. Anal., 58, 1, 565-589 (2020) · Zbl 1434.76064
[27] Demo, N., Ortali, G., Gustin, G., Rozza, G., Lavini, G.: An efficient computational framework for naval shape design and optimization problems by means of data-driven reduced order modeling techniques. arXiv preprint arXiv:2004.11201 (2020) · Zbl 1516.65073
[28] Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P., A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces, J. Comput. Phys., 347, 78-98 (2017) · Zbl 1380.65256
[29] Devarajan, B.; Kapania, R., Thermal buckling of curvilinearly stiffened laminated composite plates with cutouts using isogeometric analysis, Compos. Struct., 238, 111881 (2020)
[30] Du, J.; Wong, R., Application of strain-induced permeability model in a coupled geomechanics-reservoir simulator, J. Can. Pet. Technol., 46, 12, 55-61 (2007)
[31] Ern, A., Stephansen, A.: A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods. J. Comput. Math. pp. 488-510 (2008) · Zbl 1174.65034
[32] Ern, A.; Stephansen, A.; Zunino, P., A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity, IMA J. Numer. Anal., 29, 2, 235-256 (2009) · Zbl 1165.65074
[33] Gadalla, M., Cianferra, M., Tezzele, M., Stabile, G., Mola, A., Rozza, G.: On the comparison of LES data-driven reduced order approaches for hydroacoustic analysis. arXiv preprint arXiv:2006.14428 (2020) · Zbl 1521.76210
[34] Gao, H.; Wang, J.; Zahr, M., Non-intrusive model reduction of large-scale, nonlinear dynamical systems using deep learning, Physica D, 412, 132614 (2020) · Zbl 1489.93013
[35] Girfoglio, M., Ballarin, F., Infantino, G., Nicolò, F., Montalto, A., Rozza, G., Scrofani, R., Comisso, M., Musumeci, F.: Non-intrusive PODI-ROM for patient-specific aortic blood flow in presence of a LVAD device. arXiv preprint arXiv:2007.03527 (2020a)
[36] Girfoglio, M., Scandurra, L., Ballarin, F., Infantino, G., Nicolò, F., Montalto, A., Rozza, G., Scrofani, R., Comisso, M., Musumeci, F.: A non-intrusive data-driven ROM framework for hemodynamics problems. arXiv preprint arXiv:2010.08139 (2020b)
[37] Goh, H., Sheriffdeen, S., Bui-Thanh, T.: Solving forward and inverse problems using autoencoders. arXiv preprint arXiv:1912.04212 (2019)
[38] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), Cambridge: MIT Press, Cambridge · Zbl 1373.68009
[39] Guo, M., Haghighat, E.: An energy-based error bound of physics-informed neural network solutions in elasticity. arXiv preprint arXiv:2010.09088 (2020)
[40] Haga, J.; Osnes, H.; Langtangen, H., On the causes of pressure oscillations in low permeable and low compressible porous media, Int. J. Numer. Anal. Meth. Geomech., 36, 12, 1507-1522 (2012)
[41] Haghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R.: A deep learning framework for solution and discovery in solid mechanics: linear elasticity. arXiv preprint arXiv:2003.02751 (2020) · Zbl 1506.74476
[42] Hansen, P.: Discrete inverse problems: insight and algorithms, vol. 7. Siam (2010) · Zbl 1197.65054
[43] Hesthaven, J.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations (2016), Berlin: Springer, Berlin · Zbl 1329.65203
[44] Hesthaven, J.; Ubbiali, S., Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363, 55-78 (2018) · Zbl 1398.65330
[45] Hijazi, S., Ali, S., Stabile, G., Ballarin, F., Rozza, G.: The effort of increasing Reynolds number in projection-based reduced order methods: from laminar to turbulent flows. In: Numerical Methods for Flows, pp. 245-264. Springer (2020)
[46] Hijazi, S., Stabile, G., Mola, A., Rozza, G.: Data-driven POD-Galerkin reduced order model for turbulent flows. J. Comput. Phys. p. 109513 (2020) · Zbl 1437.76015
[47] Himpe, C.; Leibner, T.; Rave, S., Hierarchical approximate proper orthogonal decomposition, SIAM J. Sci. Comput., 40, 5, A3267-A3292 (2018) · Zbl 06948618
[48] Hinton, G.; Salakhutdinov, R., Reducing the dimensionality of data with neural networks, Science, 313, 5786, 504-507 (2006) · Zbl 1226.68083
[49] Hinton, G., Zemel, R.: Autoencoders, minimum description length and helmholtz free energy. Adv. Neural Inf. Process Syst pp. 3-10 (1994)
[50] Ibrahim, Z.; Othman, K.; Suleiman, M., Implicit r-point block backward differentiation formula for solving first-order stiff ODEs, Appl. Math. Comput., 186, 1, 558-565 (2007) · Zbl 1114.65079
[51] Jacquier, P., Abdedou, A., Delmas, V., Soulaimani, A.: Non-intrusive reduced-order modeling using uncertainty-aware deep neural networks and proper orthogonal decomposition: application to flood modeling. arXiv preprint arXiv:2005.13506 (2020)
[52] Jaeger, J.; Cook, NG; Zimmerman, R., Fundamentals of Rock Mechanics (2009), New York: Wiley, New York
[53] Jia, P.; Cheng, L.; Huang, S.; Xu, Z.; Xue, Y.; Cao, R.; Ding, G., A comprehensive model combining Laplace-transform finite-difference and boundary-element method for the flow behavior of a two-zone system with discrete fracture network, J. Hydrol., 551, 453-469 (2017)
[54] Juanes, R.; Jha, B.; Hager, B.; Shaw, J.; Plesch, A.; Astiz, L.; Dieterich, J.; Frohlich, C., Were the May 2012 Emilia-Romagna earthquakes induced? A coupled flow-geomechanics modeling assessment, Geophys. Res. Lett., 43, 13, 6891-6897 (2016)
[55] Kadeethum, T., Jørgensen, T., Nick, H.: Physics-informed neural networks for solving inverse problems of nonlinear Biot’s equations: batch training. In: 54th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, Golden, CO, USA (2020)
[56] Kadeethum, T., Jørgensen, T., Nick, H.: Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations. PLoS ONE 15(5), e0232683 (2020)
[57] Kadeethum, T., Lee, S., Ballarin, F., Choo, J., Nick, H.: A locally conservative mixed finite element framework for coupled hydro-mechanical-chemical processes in heterogeneous porous media. arXiv preprint arXiv:2010.04994 (2020)
[58] Kadeethum, T., Lee, S., Nick, H.: Finite element solvers for biot’s poroelasticity equations in porous media. Math. Geosci. 52, 977-1015 (2020) · Zbl 1451.76070
[59] Kadeethum, T., Nick, H., Lee, S.: Comparison of two-and three-field formulation discretizations for flow and solid deformation in heterogeneous porous media. In: 20th Annual Conference of the International Association for Mathematical Geosciences. PA, USA (2019)
[60] Kadeethum, T., Nick, H., Lee, S., Ballarin, F.: Enriched Galerkin discretization for modeling poroelasticity and permeability alteration in heterogeneous porous media. J. Comput. Phys. p. 110030 (2021) · Zbl 07510237
[61] Kadeethum, T., Nick, H., Lee, S., Richardson, C., Salimzadeh, S., Ballarin, F.: A novel enriched Galerkin method for modelling coupled flow and mechanical deformation in heterogeneous porous media. In: 53rd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, New York, NY, USA (2019)
[62] Kadeethum, T., Salimzadeh, S., Nick, H.: Investigation on the productivity behaviour in deformable heterogeneous fractured reservoirs. In: 2018 International Symposium on Energy Geotechnics (2018)
[63] Kadeethum, T.; Salimzadeh, S.; Nick, H., An investigation of hydromechanical effect on well productivity in fractured porous media using full factorial experimental design, J. Petrol. Sci. Eng., 181, 106233 (2019)
[64] Kadeethum, T., Salimzadeh, S., Nick, H.: Well productivity evaluation in deformable single-fracture media. Geothermics 87 (2020)
[65] Kim, J.; Tchelepi, H.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Eng., 200, 13-16, 1591-1606 (2011) · Zbl 1228.74101
[66] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
[67] Kumar, S.; Oyarzua, R.; Ruiz-Baier, R.; Sandilya, R., Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity, ESAIM Math. Modell. Numer. Anal., 54, 1, 273-299 (2020) · Zbl 1511.65114
[68] Lee, S., Kadeethum, T., Nick, H.: Choice of interior penalty coefficient for interior penalty discontinuous Galerkin method for Biot’s system by employing machine learning (2019). Submitted
[69] Lee, S.; Mikelic, A.; Wheeler, M.; Wick, T., Phase-field modeling of two phase fluid filled fractures in a poroelastic medium, Multiscale Model. Simul., 16, 4, 1542-1580 (2018) · Zbl 1401.74084
[70] Lee, S.; Wheeler, M.; Wick, T., Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput. Methods Appl. Mech. Eng., 305, 111-132 (2016) · Zbl 1425.74419
[71] Li, B.; Bouklas, N., A variational phase-field model for brittle fracture in polydisperse elastomer networks, Int. J. Solids Struct., 182, 193-204 (2020)
[72] Liang, Y.; Lee, H.; Lim, S.; Lin, W.; Lee, K.; Wu, C., Proper orthogonal decomposition and its applications-part i: Theory, J. Sound Vib., 252, 3, 527-544 (2002) · Zbl 1237.65040
[73] Lipnikov, K.; Shashkov, M.; Yotov, I., Local flux mimetic finite difference methods, Numer. Math., 112, 1, 115-152 (2009) · Zbl 1165.65063
[74] Liu, J.; Tavener, S.; Wang, Z., Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes, SIAM J. Sci. Comput., 40, 5, B1229-B1252 (2018) · Zbl 1404.65232
[75] Liu, R.; Wheeler, M.; Dawson, C.; Dean, R., On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems, Comput. Methods Appl. Mech. Eng., 198, 41-44, 3499-3510 (2009) · Zbl 1230.74189
[76] Lumley, J.: The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation (1967)
[77] Ma, Z.; Pan, W., Data-driven nonintrusive reduced order modeling for dynamical systems with moving boundaries using gaussian process regression, Comput. Methods Appl. Mech. Eng., 373, 113495 (2021) · Zbl 1506.65137
[78] Macminn, C.; Dufresne, E.; Wettlaufer, J., Large deformations of a soft porous material, Phys. Rev. Appl., 5, 4, 1-30 (2016)
[79] Matthai, S.; Nick, H., Upscaling two-phase flow in naturally fractured reservoirs, AAPG Bull., 93, 11, 1621-1632 (2009)
[80] Mignolet, M.; Przekop, A.; Rizzi, S.; Spottswood, M., A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures, J. Sound Vib., 332, 10, 2437-2460 (2013)
[81] Mikelic, A.; Wheeler, M., Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 3, 455-461 (2013) · Zbl 1392.35235
[82] Murad, M.; Borges, M.; Obregon, J.; Correa, M., A new locally conservative numerical method for two-phase flow in heterogeneous poroelastic media, Comput. Geotech., 48, 192-207 (2013)
[83] Müller, S., Schüler, L.: GeoStat-Framework/GSTools. Zenodo (2020). https://geostat-framework.readthedocs.io/
[84] Nick, H.; Raoof, A.; Centler, F.; Thullner, M.; Regnier, P., Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive henry problem, J. Contam. Hydrol., 145, 90-104 (2013)
[85] Nicolaides, C.; Jha, B.; Cueto-Felgueroso, L.; Juanes, R., Impact of viscous fingering and permeability heterogeneity on fluid mixing in porous media, Water Resour. Res., 51, 4, 2634-2647 (2015)
[86] Nordbotten, J., Cell-centered finite volume discretizations for deformable porous media, Int. J. Numer. Meth. Eng., 100, 6, 399-418 (2014) · Zbl 1352.76072
[87] O’Malley, D., Golden, J., Vesselinov, V.: Learning to regularize with a variational autoencoder for hydrologic inverse analysis. arXiv preprint arXiv:1906.02401 (2019)
[88] Ortali, G., Demo, N., Rozza, G.: Gaussian process approach within a data-driven POD framework for fluid dynamics engineering problems. arXiv preprint arXiv:2012.01989 (2020)
[89] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, R. Garnett (eds.) Advances in Neural Information Processing Systems 32, pp. 8024-8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
[90] Paul-Dubois-Taine, A.; Amsallem, D., An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models, Int. J. Numer. Meth. Eng., 102, 5, 1262-1292 (2015) · Zbl 1352.65217
[91] Pawar, S.; Rahman, S.; Vaddireddy, H.; San, O.; Rasheed, A.; Vedula, P., A deep learning enabler for nonintrusive reduced order modeling of fluid flows, Phys. Fluids, 31, 8, 085101 (2019)
[92] Phillips, P.; Wheeler, M., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case, Comput. Geosci., 11, 2, 131 (2007) · Zbl 1117.74015
[93] Phillips, P.; Wheeler, M., A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Comput. Geosci., 12, 4, 417-435 (2008) · Zbl 1155.74048
[94] Phillips, T., Heaney, C., Smith, P., Pain, C.: An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion. arXiv preprint arXiv:2008.10532 (2020)
[95] Prechelt, L., Automatic early stopping using cross validation: quantifying the criteria, Neural Netw., 11, 4, 761-767 (1998)
[96] Prechelt, L.: Early stopping-but when? In: Neural Networks: Tricks of the trade, pp. 55-69. Springer (1998)
[97] Rapún, ML; Vega, JM, Reduced order models based on local pod plus Galerkin projection, J. Comput. Phys., 229, 8, 3046-3063 (2010) · Zbl 1187.65111
[98] Riviere, B., Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation (2008), Philadelphia: SIAM, Philadelphia · Zbl 1153.65112
[99] Salimzadeh, S.; Hagerup, E.; Kadeethum, T.; Nick, H., The effect of stress distribution on the shape and direction of hydraulic fractures in layered media, Eng. Fract. Mech., 215, 151-163 (2019)
[100] San, O.; Maulik, R.; Ahmed, M., An artificial neural network framework for reduced order modeling of transient flows, Commun. Nonlinear Sci. Numer. Simul., 77, 271-287 (2019) · Zbl 1479.76082
[101] Schilders, W.: Introduction to model order reduction. In: Model order reduction: Theory, research aspects and applications, pp. 3-32. Springer (2008) · Zbl 1154.93322
[102] Schilders, W.; Van der Vorst, H.; Rommes, J., Model Order Reduction: Theory, Research Aspects and Applications (2008), Berlin: Springer, Berlin · Zbl 1143.65004
[103] Sirovich, L., Turbulence and the dynamics of coherent structures. iii. Dynamics and scaling, Q. Appl. Math., 45, 3, 583-590 (1987) · Zbl 0676.76047
[104] Sokolova, I.; Bastisya, M.; Hajibeygi, H., Multiscale finite volume method for finite-volume-based simulation of poroelasticity, J. Comput. Phys., 379, 309-324 (2019) · Zbl 07581574
[105] Stabile, G.; Hijazi, S.; Mola, A.; Lorenzi, S.; Rozza, G., POD-Galerkin reduced order methods for CFD using finite volume discretisation: vortex shedding around a circular cylinder, Commun. Appl. Ind. Math., 8, 1, 210-236 (2017) · Zbl 1383.35175
[106] Strazzullo, M.; Ballarin, F.; Mosetti, R.; Rozza, G., Model reduction for parametrized optimal control problems in environmental marine sciences and engineering, SIAM J. Sci. Comput., 40, 4, B1055-B1079 (2018) · Zbl 1395.49015
[107] Terzaghi, K., Theoretical Soil Mechanics (1951), London: Chapman And Hall Limited, London
[108] Vasile, M., Minisci, E., Quagliarella, D., Guénot, M., Lepot, I., Sainvitu, C., Goblet, J., Coelho, R.: Adaptive sampling strategies for non-intrusive pod-based surrogates. Eng. Comput. (2013)
[109] Venturi, L.; Ballarin, F.; Rozza, G., A weighted POD method for elliptic PDEs with random inputs, J. Sci. Comput., 81, 1, 136-153 (2019) · Zbl 1462.65201
[110] Vinje, V., Brucker, J., Rognes, M., Mardal, K., Haughton, V.: Fluid dynamics in syringomyelia cavities: effects of heart rate, CSF velocity, CSF velocity waveform and craniovertebral decompression. Neuroradiol. J. p. 1971400918795482 (2018)
[111] Wang, H., Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology (2017), New Jersy: Princeton University Press, New Jersy
[112] Wang, Q.; Hesthaven, J.; Ray, D., Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, J. Comput. Phys., 384, 289-307 (2019) · Zbl 1459.76117
[113] Wang, Q., Ripamonti, N., Hesthaven, J.: Recurrent neural network closure of parametric pod-galerkin reduced-order models based on the mori-zwanzig formalism. J. Comput. Phys. 109402 (2020) · Zbl 1436.65093
[114] Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C.; Guo, Y., Model identification of reduced order fluid dynamics systems using deep learning, Int. J. Numer. Meth. Fluids, 86, 4, 255-268 (2018)
[115] Wheeler, M.; Xue, G.; Yotov, I., Coupling multipoint flux mixed finite element methods with continuous Galerkin methods for poroelasticity, Comput. Geosci., 18, 1, 57-75 (2014) · Zbl 1395.65093
[116] Willcox, K.; Peraire, J., Balanced model reduction via the proper orthogonal decomposition, AIAA J., 40, 11, 2323-2330 (2002)
[117] Xiao, D.; Fang, F.; Buchan, A.; Pain, C.; Navon, I.; Muggeridge, A., Non-intrusive reduced order modelling of the Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 293, 522-541 (2015) · Zbl 1423.76287
[118] Xiao, D.; Fang, F.; Pain, C.; Hu, G., Non-intrusive reduced-order modelling of the Navier-Stokes equations based on rbf interpolation, Int. J. Numer. Meth. Fluids, 79, 11, 580-595 (2015) · Zbl 1455.76099
[119] Xiao, D.; Heaney, C.; Fang, F.; Mottet, L.; Hu, R.; Bistrian, D.; Aristodemou, E.; Navon, I.; Pain, C., A domain decomposition non-intrusive reduced order model for turbulent flows, Comput. Fluids, 182, 15-27 (2019) · Zbl 1411.76072
[120] Yu, J.; Yan, C.; Guo, M., Non-intrusive reduced-order modeling for fluid problems: a brief review, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 233, 16, 5896-5912 (2019)
[121] Yu, Y., Bouklas, N., Landis, C., Huang, R.: Poroelastic effects on the time-and rate-dependent fracture of polymer gels. J. Appl. Mech. 87(3) (2020)
[122] Zdunek, A.; Rachowicz, W.; Eriksson, T., A five-field finite element formulation for nearly inextensible and nearly incompressible finite hyperelasticity, Comput. Math. Appl., 72, 1, 25-47 (2016) · Zbl 1443.74151
[123] Zhao, Y.; Choo, J., Stabilized material point methods for coupled large deformation and fluid flow in porous materials, Comput. Methods Appl. Mech. Eng., 362, 112742 (2020) · Zbl 1439.76163
[124] Zinn, B., Harvey, C.: When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate gaussian hydraulic conductivity fields. Water Resour. Res. 39(3) (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.