×

Parameter identification techniques applied to an environmental pollution model. (English) Zbl 1412.65043

Summary: The retrieval of parameters related to an environmental model is explored. We address computational challenges occurring due to a significant numerical difference of up to two orders of magnitude between the two model parameters we aim to retrieve. First, the corresponding optimization problem is poorly scaled, causing minimization algorithms to perform poorly [P.E. Gill et al., Practical optimization. London etc.: Academic Press, a Subsidiary of Harcourt Brace Jovanovich, Publishers (1981; Zbl 0503.90062)]. This issue is addressed by proper rescaling. Difficulties also arise from the presence of strong nonlinearity and ill-posedness which means that the parameters do not converge to a single deterministic set of values, but rather there exists a range of parameter combinations that produce the same model behavior. We address these computational issues by the addition of a regularization term in the cost function. All these computational approaches are addressed in the framework of variational adjoint data assimilation. The used observational data are derived from numerical simulation results located at only two spatial points. The effect of different initial guess values of parameters on retrieval results is also considered. As indicated by results of numerical experiments, the method presented in this paper achieves a near perfect parameter identification, and overcomes the indefiniteness that may occur in inversion process even in the case of noisy input data.

MSC:

65K10 Numerical optimization and variational techniques

Citations:

Zbl 0503.90062

Software:

Poblano
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Q. Chai; R. Loxton; K. L. Teo; C. Yang, A unified parameter identification method for nonlinear time delay systems, Journal of Industrial and Management Optimization, 9, 471-486 (2013) · Zbl 1274.93064
[2] T. Chen; C. Xu, Computational optimal control of the Saint-Venant PDE model using the time-scaling technique, Asia-Pacific Journal of Chemical Engineering, 11, 70-80 (2016)
[3] J. Du; I. M. Navon; J. Zhu; F. Fang; A. K. Alekseev, Reduced order modeling based on POD of a parabolized Navier-Stokes equations model Ⅱ: trust region POD 4DVAR data assimilation, Comput. Math. Appl., 65, 380-394 (2013) · Zbl 1319.76030
[4] D. M. Dunlavy, T. G. Kolda and E. Acar, Poblano v1. 0: A Matlab Toolbox for Gradient-Based Optimization, SANDIA Report, 2010.
[5] H. W. Engl, Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates, J. Optim. Theory Appl., 52, 209-215 (1987) · Zbl 0586.65045
[6] C. Farhat; R. Tezaur; R. Djellouli, On the solution of three-dimensional inverse obstacle acoustic scattering problems by a regularized Newton method, Inverse Problems, 18, 1229-1246 (2002) · Zbl 1009.35088
[7] R. Giering, Tangent linear and adjoint biogeochemical models, in Inverse Methods in Global Biogeochemical Cycles (eds. P. Kasibhatla, M. Heimann, P. Rayner, N. Mahowald, R. G. Prinn and D. E. Hartley), American Geophysical Union: Washington DC, 2000, 33-47.
[8] P. E. Gill, W. Murray and M. H. Wright, Practical Optimization, Academic Press, 1981. · Zbl 0503.90062
[9] M. Gunzburger, Adjoint equation-based methods for control problems in incompressible, viscous flows, Flow Turbulence Combust., 65, 249-272 (2000) · Zbl 0996.76024
[10] P. C. Hansen, Rank-Deficient and Discrete Ill-posed Problems, Practical optimization, SIAM, 1998.
[11] M. J. Hossen; I. M. Navon; D. N. Daescu, Effect of random perturbations on adaptive observation techniques, International Journal For Numerical Methods in Fluids, 69, 110-123 (2012) · Zbl 1426.76632
[12] S. X. Huang; W. Han; R. S. Wu, Theoretical analysis and numerical experiments of variational assimilation for one-dimensional ocean temperature model with techniques in inverse problems, Science in China D, 47, 630-638 (2004)
[13] D. Krawczyk-stando; M. Rudnicki, Regularization parameter selection in discrete ill-posed problems{The use of the U-curve, Int. J. Appl. Math. Comput. Sci., 17, 157-164 (2007)} · Zbl 1120.49032
[14] Q. Lin; R. Loxton; C. Xu; K. L. Teo, Parameter estimation for nonlinear time-delay systems with noisy output measurements, Automatica, 60, 48-56 (2015) · Zbl 1331.93197
[15] W. J. Liu, G. Li and L. H. Hong, General decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping, Journal of Function Spaces, 2 (2014), article ID 284809, 21pp. · Zbl 1292.35048
[16] R. Loxton; K. L. Teo; V. Rehbock, An optimization approach to state-delay identification, IEEE Transactions on Automatic Control, 55, 2113-2119 (2010) · Zbl 1368.93126
[17] B. Malengier; R. V. Keer, Parameter estimation in convection dominated nonlinear convection-diffusion problems by the relaxation method and the adjoint equation, Journal of Computational and Applied Mathematics, 215, 477-483 (2008) · Zbl 1138.65086
[18] I. M. Navon, Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dynam. Atmos. Oceans, 27, 55-79 (1998)
[19] I. M. Navon; D. M. Legler, Conjugate-gradient methods for large-scale minimization in meteorology, Monthly Weather Review, 115, 1479-1502 (1987)
[20] I. M. Navon; X. Zou; J. Derber; J. Sela, Variational data assimilation with an adiabatic version of the nmc spectral model, Monthly Weather Review, 120, 1433-1446 (1992)
[21] T. Nieminen; J. Kangas; L. Kettunen, Use of Tikhonov regularization to improve the accuracy of position estimates in inertial navigation, International Journal of Navigation and Observation, 2011, 1-10 (2011)
[22] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 1999. · Zbl 0930.65067
[23] D. W. Peaceman; H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 3, 28-41 (1955) · Zbl 0067.35801
[24] B. Protas; T. R. Bewley; G. Hagen, A computational framework for the regularization of adjoint analysis in multiscale PDE systems, Journal of Computational Physics, 195, 49-89 (2004) · Zbl 1049.65059
[25] R. B. Storch; L. C. G. Pimentel; H. R. B. Orlande, Identification of atmospheric boundary layer parameters by inverse problem, Atmospheric Environment, 41, 1417-1425 (2007)
[26] Y. P. Wang; I. M. Navon; X. Y. Wang; Y. Cheng, 2D Burgers equation with large Reynolds number using POD/DEIM and calibration, International Journal For Numerical Methods in Fluids, 82, 909-931 (2016)
[27] Y. P. Wang; S. L. Tao, Application of regularization technique to variational adjoint method: A case for nonlinear convection-diffusion problem, Applied Mathematics and Computation, 218, 4475-4482 (2011) · Zbl 1244.65133
[28] Y. W. Wen; A. M. Yip, Adaptive Parameter Selection for Total Variation Image Deconvolution, Numer. Math. Theor. Meth. Appl., 2, 427-438 (2009) · Zbl 1212.65255
[29] J. C.-F. Wong; J.-L. Xie, Inverse determination of a heat source from natural convection in a porous cavity, Computers and Fluids, 52, 1-14 (2011) · Zbl 1271.76319
[30] Y. Zhu; I. M. Navon, Impact of parameter estimation on the performance of the FSU global spectral model using its full-physics adjoint, Monthly Weather Review, 127, 1497-1517 (1999)
[31] X. Zou; I. M. Navon; F. X. LeDimet, An optimal nudging data assimilation scheme using parameter estimation, Quarterly Journal of the Royal Meteorological Society, 118, 1163-1186 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.