×

POD-ROM for the Darcy-Brinkman equations with double-diffusive convection. (English) Zbl 1458.65125

Summary: This paper extends proper orthogonal decomposition reduced order modeling to flows governed by double diffusive convection, which models flow driven by two potentials with different rates of diffusion. We propose a reduced model based on proper orthogonal decomposition, present a stability and convergence analyses for it, and give results for numerical tests on a benchmark problem which show it is an effective approach to model reduction in this setting.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D99 Incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.; Adams, R. A., Sobolev Spaces (1975) · Zbl 0314.46030
[2] R. Bennacer, H. Beji, R. Duval, and P. Vasseur, The Brinkman model for thermosolutal convection in a vertical annular porous layer, Int. Comm. Heat Mass Transfer27:1 (2000), 69-80.; Bennacer, R.; Beji, H.; Duval, R.; Vasseur, P., The Brinkman model for thermosolutal convection in a vertical annular porous layer, Int. Comm. Heat Mass Transfer, 27, 1, 69-80 (2000) · Zbl 1045.76563
[3] M. Benosman, J. Borggaard, O. San, and B. Kramer, Learning-based robust stabilization for reduced-order models of 2D and 3D Boussinesq equations, Appl. Math. Model. 49 (2017), 162-181.; Benosman, M.; Borggaard, J.; San, O.; Kramer, B., Learning-based robust stabilization for reduced-order models of 2D and 3D Boussinesq equations, Appl. Math. Model., 49, 162-181 (2017) · Zbl 1480.93332
[4] A. Caiazzo, T. Iliescu, V. John, and S. Schyschlowa, A numerical investigation of velocity-pressure reduced order models for incompressible flows, J. Comput. Phys. 259 (2014), 598-616.; Caiazzo, A.; Iliescu, T.; John, V.; Schyschlowa, S., A numerical investigation of velocity-pressure reduced order models for incompressible flows, J. Comput. Phys., 259, 598-616 (2014) · Zbl 1349.76050
[5] S. Chen, J. Tölke, and M. Krafczyk, Numerical investigation of double-diffusive (natural) convection in vertical annuluses with opposing temperature and concentration gradients, Int. J. Heat Fluid Flow31(2) (2010), 217-226.; Chen, S.; Tölke, J.; Krafczyk, M., Numerical investigation of double-diffusive (natural) convection in vertical annuluses with opposing temperature and concentration gradients, Int. J. Heat Fluid Flow, 31, 2, 217-226 (2010)
[6] F. Eroglu, S. Kaya, and L. Rebholz, A modular regularized variational multiscale proper orthogonal decomposition for incompressible flows, Comput. Methods Appl. Mech. Engrg. 325 (2017), 350-368.; Eroglu, F.; Kaya, S.; Rebholz, L., A modular regularized variational multiscale proper orthogonal decomposition for incompressible flows, Comput. Methods Appl. Mech. Engrg., 325, 350-368 (2017) · Zbl 1439.76065
[7] F. Fang, C. C. Pain, I. M. Navon, M.D. Piggott, G. J. Gorman, and P. A. Allison A. J. H. Goddard, Reduced-order modelling of an adaptive mesh ocean model, Int. J. Numer. Methods Fluids59(8) (2009), 827-851.; Fang, F.; Pain, C. C.; Navon, I. M.; Piggott, M. D.; Gorman, G. J.; Allison, P. A.; Goddard, A. J. H., Reduced-order modelling of an adaptive mesh ocean model, Int. J. Numer. Methods Fluids, 59, 8, 827-851 (2009) · Zbl 1155.86004
[8] K. Ghorayeb and A.Mojtabi, Double diffusive convection in a vertical rectangular cavity, Phys. Fluids9 (1997), No. 8, 2339-2348.; Ghorayeb, K.; Mojtabi, A., Double diffusive convection in a vertical rectangular cavity, Phys. Fluids, 9, 8, 2339-2348 (1997) · Zbl 0872.76036
[9] V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Math., Vol. 749, Springer-Verlag, Berlin, 1979.; Girault, V.; Raviart, P. A., Lecture Notes in Math., 749 (1979) · Zbl 0413.65081
[10] B. Goyeau, J. P. Songbe, and D. Gobin, Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation, Int. J. Heat Mass Transfer39 (1996), No. 7, 1363-1378.; Goyeau, B.; Songbe, J. P.; Gobin, D., Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation, Int. J. Heat Mass Transfer, 39, 7, 1363-1378 (1996) · Zbl 0963.76585
[11] M. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms, Academic Press, Boston, 1989.; Gunzburger, M., Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms (1989)
[12] J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes equations, Part II: Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal. 23 (1986), 750-777.; Heywood, J.; Rannacher, R., Finite element approximation of the nonstationary Navier-Stokes equations, Part II: Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal., 23, 750-777 (1986) · Zbl 0611.76036
[13] P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge, 1996.; Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996) · Zbl 0890.76001
[14] T. Iliescu and Z.Wang, Variational multiscale proper orthogonal decomposition: convection-dominated convection– diffusion-reaction equations, Math. Comput. 82 (2013), No. 283, 1357-1378.; Iliescu, T.; Wang, Z., Variational multiscale proper orthogonal decomposition: convection-dominated convection– diffusion-reaction equations, Math. Comput., 82, 283, 1357-1378 (2013) · Zbl 1336.76017
[15] T. Iliescu and Z.Wang, Variational Multiscale Proper Orthogonal Decomposition: Navier-Stokes Equations, Numer. Meth. Partial. Diff. Equ. 30 (2014), No. 2, 641-663.; Iliescu, T.; Wang, Z., Variational Multiscale Proper Orthogonal Decomposition: Navier-Stokes Equations, Numer. Meth. Partial. Diff. Equ., 30, 2, 641-663 (2014) · Zbl 1452.76048
[16] M. Karimi-Fard, M. C. Charrier-Mojtabi, and K. Vafai, Non-Darcian effects on double-diffusive convection within a porous medium, Numer. Heat Transfer, Part A: Appl. 31 (1997), No. 8, 837-852.; Karimi-Fard, M.; Charrier-Mojtabi, M. C.; Vafai, K., Non-Darcian effects on double-diffusive convection within a porous medium, Numer. Heat Transfer, Part A: Appl., 31, 8, 837-852 (1997) · Zbl 0872.76034
[17] J.P. Kelliher, R. Temam, and X.Wang, Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media, Phys. D240 (2011), 619-628.; Kelliher, J. P.; Temam, R.; Wang, X., Boundary layer associated with the Darcy-Brinkman-Boussinesq model for convection in porous media, Phys. D, 240, 619-628 (2011) · Zbl 1209.37102
[18] W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows, SIAM, 2008.; Layton, W., Introduction to the Numerical Analysis of Incompressible Viscous Flows (2008) · Zbl 1153.76002
[19] Z. Luo, J. Zhu, R.Wang, and I.M. Navon, Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model, Comput. Methods Appl. Mech. Engrg. 196 (2007), 4184-4195.; Luo, Z.; Zhu, J.; Wang, R.; Navon, I. M., Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model, Comput. Methods Appl. Mech. Engrg., 196, 4184-4195 (2007) · Zbl 1173.76348
[20] R.March, A.L.G.A. Coutinho, and R.N. Elias, Stabilized finite element simulation of double diffusive natural convection, Mecanica ComputacionalXXIX (2010), 7985-8000.; March, R.; Coutinho, A. L.G. A.; Elias, R. N., Stabilized finite element simulation of double diffusive natural convection, Mecanica Computacional, XXIX, 7985-8000 (2010)
[21] A.Mojtabi and M. C. Charrier-Mojtabi, Double-Diffusive Convection in Porous Media. In: Handbook of Porous Media, Part III, Taylor and Francis, 2005.; Mojtabi, A.; Charrier-Mojtabi, M. C., Handbook of Porous Media, Part III (2005) · Zbl 0936.76535
[22] D.A. Nield and A. Bejan, Convection in Porous Media, Springer, Berlin, 1992.; Nield, D. A.; Bejan, A., Convection in Porous Media (1992) · Zbl 0924.76001
[23] S. Ravindran, Real-time computational algorithm for optimal control of an MHD flow system, SIAM J. Sci. Comput. 26 (2005), 1369-1388.; Ravindran, S., Real-time computational algorithm for optimal control of an MHD flow system, SIAM J. Sci. Comput., 26, 1369-1388 (2005) · Zbl 1152.76503
[24] O. San and J. Borggaard, Basis selection and closure for POD models of convection dominated Boussinesq flows, Proc. of the 21-st International Symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands (2014), 132-139.; San, O.; Borggaard, J., Basis selection and closure for POD models of convection dominated Boussinesq flows, Proc. of the 21-st International Symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands, 132-139 (2014)
[25] O. San and J. Borggaard, Principal interval decomposition framework for POD reduced-order modeling of convective Boussinesq flows, Int. J. Numer. Meth. Fluids78 (2015), 37-62.; San, O.; Borggaard, J., Principal interval decomposition framework for POD reduced-order modeling of convective Boussinesq flows, Int. J. Numer. Meth. Fluids, 78, 37-62 (2015)
[26] A. Sartori, A. Cammi, L. Luzzi, and G. Rozza, A multi-physics reduced order model for the analysis of Lead Fast Reactor single channel, Annals of Nuclear Energy87 (2016), 198-208.; Sartori, A.; Cammi, A.; Luzzi, L.; Rozza, G., A multi-physics reduced order model for the analysis of Lead Fast Reactor single channel, Annals of Nuclear Energy, 87, 198-208 (2016) · Zbl 1388.65106
[27] L. Sirovich, Turbulence and the dynamics of coherent structures. Parts I, II, and III, Quart. Appl. Math. 45 (1987), 561-590.; Sirovich, L., Turbulence and the dynamics of coherent structures. Parts I, II, and III, Quart. Appl. Math., 45, 561-590 (1987) · Zbl 0676.76047
[28] X. Xie, Z.Wang, D. Wells, and T. Iliescu, Numerical analysis of the Leray reduced order model, J. Comput. Appl. Math. 328 (2018), 12-29.; Xie, X.; Wang, Z.; Wells, D.; Iliescu, T., Numerical analysis of the Leray reduced order model, J. Comput. Appl. Math., 328, 12-29 (2018) · Zbl 1431.65182
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.