×

Reduced basis approximation and a posteriori error bounds for 4D-Var data assimilation. (English) Zbl 1507.49026

Summary: We propose a certified reduced basis approach for the strong- and weak-constraint four-dimensional variational (4D-Var) data assimilation problem for a parametrized PDE model. While the standard strong-constraint 4D-Var approach uses the given observational data to estimate only the unknown initial condition of the model, the weak-constraint 4D-Var formulation additionally provides an estimate for the model error and thus can deal with imperfect models. Since the model error is a distributed function in both space and time, the 4D-Var formulation leads to a large-scale optimization problem for every given parameter instance of the PDE model. To solve the problem efficiently, various reduced order approaches have therefore been proposed in the recent past. Here, we employ the reduced basis method to generate reduced order approximations for the state, adjoint, initial condition, and model error. Our main contribution is the development of efficiently computable a posteriori upper bounds for the error of the reduced basis approximation with respect to the underlying high-dimensional 4D-Var problem. Numerical results are conducted to test the validity of our approach.

MSC:

49M20 Numerical methods of relaxation type
65K10 Numerical optimization and variational techniques
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barrault M, Maday Y, Nguyen NC, Patera AT (2004) An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C R Acad Sci Paris 339(9):667-672. https://doi.org/10.1016/j.crma.2004.08.006 · Zbl 1061.65118
[2] Bennett AF (1993) Inverse methods in physical oceanography. Cambridge University Press, Cambridge · Zbl 0782.76002
[3] Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14:1-137. https://doi.org/10.1017/S0962492904000212 · Zbl 1115.65034
[4] Bröcker J (2017) Existence and uniqueness for four-dimensional variational data assimilation in discrete time. SIAM J Appl Dyn Syst 16(1):361-374. https://doi.org/10.1137/16M1068918 · Zbl 1417.37292
[5] Cao Y, Zhu J, Navon IM, Luo Z (2007) A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition. Int J Numer Methods Fluids 53(10):1571-1583. https://doi.org/10.1002/fld.1365 · Zbl 1370.86002
[6] Chen X, Navon IM, Fang F (2011) A dual-weighted trust-region adaptive POD 4D-Var applied to a finite-element shallow-water equations model. Int J Numer Methods Fluids 65(5):520-541. https://doi.org/10.1002/fld.2198 · Zbl 1428.76145
[7] Courtier P (1997) Dual formulation of four-dimensional variational assimilation. Q J R Meteorol Soc 123(544):2449-2461. https://doi.org/10.1002/qj.49712354414
[8] Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc 120(519):1367-1387. https://doi.org/10.1002/qj.49712051912
[9] Daescu DN, Navon IM (2008) A dual-weighted approach to order reduction in 4DVAR data assimilation. Mon Weather Rev 136(3):1026-1041. https://doi.org/10.1175/2007MWR2102.1
[10] Dedè L (2010) Reduced basis method and a posteriori error estimation for parametrized linear-quadratic optimal control problems. SIAM J Sci Comput 32(2):997-1019 · Zbl 1221.35030
[11] Dimitriu G, Apreutesei N, Ştefănescu R (2010) Numerical simulations with data assimilation using an adaptive POD Procedure. Springer, Berlin, pp 165-172. https://doi.org/10.1007/978-3-642-12535-5_18 · Zbl 1280.65006
[12] Du J, Navon I, Zhu J, Fang F, Alekseev A (2013) Reduced order modeling based on POD of a parabolized Navier-Stokes equations model II: Trust region POD 4D VAR data assimilation. Comput Math Appl 65(3):380-394. https://doi.org/10.1016/j.camwa.2012.06.001 · Zbl 1319.76030
[13] Ekeland I, Temam R (1976) Convex analysis and variational problems. Studies in mathematics and its applications. Elsevier, Amsterdam · Zbl 0322.90046
[14] Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer, Dordrecht · Zbl 0859.65054
[15] Ern A, Guermond JL (2010) Theory and practice of finite elements. Applied mathematical sciences. Springer, Berlin
[16] Fursikov AV (2000) Optimal control of distributed systems. Theory and applications, vol 187. American Mathematical Society, Providence · Zbl 1027.93500
[17] Gerner AL, Veroy K (2012) Certified reduced basis methods for parametrized saddle point problems. SIAM J Sci Comput 34(5):A2812-A2836. https://doi.org/10.1137/110854084 · Zbl 1255.76024
[18] Grepl MA, Patera AT (2005) A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM Math Model Numer 39(1):157-181. https://doi.org/10.1051/m2an:2005006 · Zbl 1079.65096
[19] Grepl MA, Maday Y, Nguyen NC, Patera AT (2007) Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM Math Model Numer Anal 41(3):575-605 · Zbl 1142.65078
[20] Habert J, Ricci S, Pape EL, Thual O, Piacentini A, Goutal N, Jonville G, Rochoux M (2016) Reduction of the uncertainties in the water level-discharge relation of a 1d hydraulic model in the context of operational flood forecasting. J Hydrol 532(Supplement C):52-64. https://doi.org/10.1016/j.jhydrol.2015.11.023
[21] Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints, mathematical modelling: theory and applications, vol 23. Springer, Berlin · Zbl 1167.49001
[22] Hoteit I, Köhl A (2006) Efficiency of reduced-order, time-dependent adjoint data assimilation approaches. J Oceanogr 62(4):539-550. https://doi.org/10.1007/s10872-006-0074-2
[23] Huynh DBP, Rozza G, Sen S, Patera AT (2007) A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C R Acad Sci Paris 345(8):473-478. https://doi.org/10.1016/j.crma.2007.09.019 · Zbl 1127.65086
[24] Ide K, Courtier P, Ghil M, Lorenc A (1997) Unified notation for data assimilation: operational, sequential and variational. J Meteorol Soc Jpn 75:181-189
[25] Kärcher M (2017) Certified reduced basis methods for parametrized pde-constrained optimization problems. Ph.D. thesis, RWTH Aachen University
[26] Kärcher M, Grepl MA (2013) A certified reduced basis method for parametrized elliptic optimal control problems. ESAIM Control Optim CA 20(2):416-441. https://doi.org/10.1051/cocv/2013069 · Zbl 1287.49032
[27] Kärcher M, Grepl MA (2014) A posteriori error estimation for reduced order solutions of parametrized parabolic optimal control problems. ESAIM M2AN 48(6):1615-1638. https://doi.org/10.1051/m2an/2014012 · Zbl 1304.49056
[28] Kärcher M, Tokoutsi Z, Grepl MA, Veroy K (2017) Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls. J Sci Comput. https://doi.org/10.1007/s10915-017-0539-z · Zbl 1388.49023
[29] Krysta M, Bocquet M (2007) Source reconstruction of an accidental radionuclide release at European scale. Q J R Meteorol Soc 133(623):529-544. https://doi.org/10.1002/qj.3
[30] Krysta M, Bocquet M, Sportisse B, Isnard O (2006) Data assimilation for short-range dispersion of radionuclides: an application to wind tunnel data. Atmos Environ 40(38):7267-7279. https://doi.org/10.1016/j.atmosenv.2006.06.043
[31] Law K, Stuart A, Zygalakis K (2015) Data assimilation. Springer, Berlin · Zbl 1353.60002
[32] Le Dimet FX, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38A(2):97-110. https://doi.org/10.1111/j.1600-0870.1986.tb00459.x
[33] Lorenc AC (1981) A global three-dimensional multivariate statistical interpolation scheme. Mon Weather Rev 109(4):701-721. https://doi.org/10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2
[34] Lorenc AC (1986) Analysis methods for numerical weather prediction. Q J R Meteorol Soc 112(474):1177-1194. https://doi.org/10.1002/qj.49711247414
[35] Lynch P (2015) The Princeton companion to applied mathematics. Numerical weather prediction. Princeton University Press, Princeton, pp 705-712
[36] Maday Y, Nguyen NC, Patera AT, Pau GSH (2007) A general, multipurpose interpolation procedure: the magic points. Commun Pure Appl Anal (CPAA) 8:383-404. https://doi.org/10.3934/cpaa.2009.8.383 · Zbl 1184.65020
[37] Maday Y, Patera AT, Penn JD, Yano M (2015a) A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. Int J Numer Methods Eng 102(5):933-965. https://doi.org/10.1002/nme.4747 · Zbl 1352.65529
[38] Maday Y, Patera AT, Penn JD, Yano M (2015b) PBDW state estimation: noisy observations; configuration-adaptive background spaces; physical interpretations. ESAIM Proc 50:144-168. https://doi.org/10.1051/proc/201550008 · Zbl 1342.82116
[39] Marchuk G, Shutyaev V (2002) Solvability and numerical algorithms for a class of variational data assimilation problems. ESAIM Control Optim Calc Var 8:873-883. https://doi.org/10.1051/cocv:2002044 · Zbl 1070.65553
[40] Marshall J, Shuckburgh E, Jones H, Hill C (2006) Estimates and implications of surface eddy diffusivity in the southern ocean derived from tracer transport. J Phys Oceanogr 36(9):1806-1821. https://doi.org/10.1175/JPO2949.1
[41] Negri F, Rozza G, Manzoni A, Quarteroni A (2013) Reduced basis method for parametrized elliptic optimal control problems. SIAM J Sci Comput 35(5):A2316-A2340 · Zbl 1280.49046
[42] Pontryagin L, Boltyanskij V, Gamkrelidze R, Mishchenko E (1964) The mathematical theory of optimal processes (translated from the Russian by D.E. Brown Macmillan). Pergamon Press, Oxford · Zbl 0117.31702
[43] Prud’homme C, Rovas DV, Veroy K, Machiels L, Maday Y, Patera AT, Turinici G (2002) Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J Fluids Eng 124(1):70-80. https://doi.org/10.1115/1.1448332
[44] Puel JP (2009) A nonstandard approach to a data assimilation problem and Tychonov regularization revisited. SIAM J Control Optim 48(2):1089-1111. https://doi.org/10.1137/060670961 · Zbl 1194.93096
[45] Rao V, Sandu A, Ng M, Nino-Ruiz ED (2017) Robust data assimilation using \[l_1\] l1 and Huber norms. SIAM J Sci Comput 39(3):B548-B570. https://doi.org/10.1137/15M1045910 · Zbl 1368.65018
[46] Reich S, Cotter C (2015) Probabilistic forecasting and bayesian data assimilation. Cambridge University Press, Cambridge · Zbl 1314.62005
[47] Robert C, Durbiano S, Blayo E, Verron J, Blum J, Dimet FXL (2005) A reduced-order strategy for 4D-Var data assimilation. J Mar Syst 57(1-2):70-82. https://doi.org/10.1016/j.jmarsys.2005.04.003
[48] Rozza G, Huynh DBP, Patera AT (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng 15(3):229-275. https://doi.org/10.1007/s11831-008-9019-9 · Zbl 1304.65251
[49] Sasaki Y (1970) Some basic formalisms in numerical variational analysis. Mon Weather Rev 98(12):875-883. https://doi.org/10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2
[50] Ştefănescu R, Sandu A, Navon IM (2015) POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation. J Comput Phys 295:569-595. https://doi.org/10.1016/j.jcp.2015.04.030 · Zbl 1349.76535
[51] Stoll M, Wathen A (2013) All-at-once solution of time-dependent Stokes control. J Comput Phys 232(1):498-515. https://doi.org/10.1016/j.jcp.2012.08.039
[52] Trémolet Y (2006) Accounting for an imperfect model in 4D-Var. Q J R Meteorol Soc 132(621):2483-2504. https://doi.org/10.1256/qj.05.224
[53] Tröltzsch F, Volkwein S (2009) POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput Optim Appl 44:83-115. https://doi.org/10.1007/s10589-008-9224-3 · Zbl 1189.49050
[54] Vermeulen PTM, Heemink AW (2006) Model-reduced variational data assimilation. Mon Weather Rev 134(10):2888-2899. https://doi.org/10.1175/MWR3209.1
[55] Veroy K, Rovas DV, Patera AT (2002) A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: convex inverse bound conditioners. ESAIM Control Optim CA 8:1007-1028. https://doi.org/10.1051/cocv:2002041 · Zbl 1092.35031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.