×

An improved criterion to select dominant modes from dynamic mode decomposition. (English) Zbl 1408.76202

Eur. J. Mech., B, Fluids 62, 109-129 (2017); corrigendum ibid. 68, 219 (2018).
Summary: Dynamic mode decomposition (DMD) has been extensively utilized to analyze the coherent structures in many complex flows. Although specific flow patterns with dominant frequency and growth rate can be captured, extracting dominant DMD modes for flow reconstruction and dynamic modeling still needs a priori knowledge on flow physics, especially for some transient states of unstable flows. In this paper, a criterion to select dominant modes from DMD technique is developed. The unsteady flow can be described by the superposition of each normalized DMD mode multiplied by its time coefficient. The dominance of each DMD mode can be ordered by time integration of its time coefficient. Compared with standard DMD approach, which decides the dominance of DMD modes from the order of amplitude or mode norm, this criterion considers the evolution of each mode within the whole sampling space, and ranks them according to their contribution to all samples. The proposed mode selection strategy is evaluated by test cases including both equilibrium and transient states of a cylinder at Reynolds number of 60 and a transient state of a NACA0012 airfoil buffeting in transonic flow. Results indicate that using this criterion, dominant DMD modes can be identified and flow dynamics in unstable or transient systems can be reconstructed accurately with fewer modes. Besides, this approach has better convergence against mode number and lower sensitivity to the initial condition than standard DMD method.

MSC:

76D17 Viscous vortex flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76H05 Transonic flows
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhang, W.; Li, X.; Ye, Z.; Jiang, Y., Mechanism of frequency lock-in in vortex-induced vibrations at low reynolds numbers, J. Fluid. Mech., 783, 72-102, (2015) · Zbl 1382.76062
[2] Kou, J.; Zhang, W., An approach to enhance the generalization capability of nonlinear aerodynamic reduced-order models, Aerosp. Sci. Technol., 49, 197-208, (2016)
[3] Kou, J.; Zhang, W.; Yin, M., Novel Wiener models with a time-delayed nonlinear block and their identification, Nonlinear Dynam., 85, 2389-2404, (2016)
[4] Zhang, W.; Kou, J.; Wang, Z., Nonlinear aerodynamic reduced-order model for limit-cycle oscillation and flutter, AIAA J., 54, 3304-3311, (2016)
[5] Noack, B. R.; Afanasiev, K.; MorzyŃSki, M.; Tadmor, G.; Thiele, F., A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid. Mech., 497, 335-363, (2003) · Zbl 1067.76033
[6] Rowley, C. W., Model reduction for fluids, using balanced proper orthogonal decomposition, Int. J. Bifurcation Chaos, 15, 997-1013, (2005) · Zbl 1140.76443
[7] Rowley, C. W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D. S., Spectral analysis of nonlinear flows, J. Fluid. Mech., 641, 115, (2009) · Zbl 1183.76833
[8] Schmid, P. J., Dynamic mode decomposition of numerical and experimental data, J. Fluid. Mech., 656, 5-28, (2010) · Zbl 1197.76091
[9] Barbagallo, A.; Sipp, D.; Schmid, P. J., Closed-loop control of an open cavity flow using reduced-order models, J. Fluid. Mech., 641, 1, (2009) · Zbl 1183.76701
[10] Barbagallo, A.; Sipp, D.; Schmid, P. J., Input-output measures for model reduction and closed-loop control: application to global modes, J. Fluid. Mech., 685, 23-53, (2011) · Zbl 1241.76163
[11] Fossati, M., Evaluation of aerodynamic loads via reduced-order methodology, AIAA J., 53, 2389-2405, (2015)
[12] Xiao, D.; Yang, P.; Fang, F.; Xiang, J.; Pain, C. C.; Navon, I. M., Non-intrusive reduced order modelling of fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 303, 35-54, (2016) · Zbl 1425.74167
[13] Ma, X.; Karniadakis, G. E., A low-dimensional model for simulating three-dimensional cylinder flow, J. Fluid. Mech., 458, (2002) · Zbl 1001.76043
[14] Bourguet, R.m.; Braza, M.; Dervieux, A., Reduced-order modeling for unsteady transonic flows around an airfoil, Phys. Fluids, 19, (2007) · Zbl 1182.76077
[15] Walton, S.; Hassan, O.; Morgan, K., Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions, Appl. Math. Model., 37, 8930-8945, (2013) · Zbl 1426.76576
[16] Seena, A.; Sung, H. J., Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations, Int. J. Heat Fluid Flow, 32, 1098-1110, (2011)
[17] Duke, D.; Soria, J.; Honnery, D., An error analysis of the dynamic mode decomposition, Exp. Fluids, 52, 529-542, (2012) · Zbl 1241.76016
[18] Muld, T. W.; Efraimsson, G.; Henningson, D. S., Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition, Comput. Fluids, 57, 87-97, (2012) · Zbl 1365.76165
[19] Sarmast, S.; Dadfar, R.; Mikkelsen, R. F.; Schlatter, P.; Ivanell, S.; Sørensen, J. N.; Henningson, D. S., Mutual inductance instability of the tip vortices behind a wind turbine, J. Fluid. Mech., 755, 705-731, (2014)
[20] Jovanović, M. R.; Schmid, P. J.; Nichols, J. W., Sparsity-promoting dynamic mode decomposition, Phys. Fluids, 26, (2014)
[21] Sayadi, T.; Schmid, P. J.; Richecoeur, F.; Durox, D., Parametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systems, Phys. Fluids, 27, (2015)
[22] Chen, K. K.; Tu, J. H.; Rowley, C. W., Variants of dynamic mode decomposition: boundary condition, koopman, and Fourier analyses, J. Nonlinear Sci., 22, 887-915, (2012) · Zbl 1259.35009
[23] Wynn, A.; Pearson, D. S.; Ganapathisubramani, B.; Goulart, P. J., Optimal mode decomposition for unsteady flows, J. Fluid. Mech., 733, 473-503, (2013) · Zbl 1294.76205
[24] Dawson, S. T.M.; Hemati, M. S.; Williams, M. O.; Rowley, C. W., Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition, Exp. Fluids, 57, (2016)
[25] Leroux, R.; Cordier, L., Dynamic mode decomposition for non-uniformly sampled data, Exp. Fluids, 57, (2016)
[26] Brunton, S. L.; Proctor, J. L.; Tu, J. H.; Kutz, J. N., Compressed sensing and dynamic mode decomposition, J. Comput. Dyn., 2, 165-191, (2016) · Zbl 1347.94012
[27] Brunton, S. L.; Tu, J. H.; Bright, I.; Kutz, J. N., Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems, SIAM J. Appl. Dyn. Syst., 13, 1716-1732, (2014) · Zbl 1354.37078
[28] Kutz, J. N.; Fu, X.; Brunton, S. L., Multiresolution dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 15, 713-735, (2016) · Zbl 1338.37121
[29] Sargsyan, S.; Brunton, S. L.; Kutz, J. N., Nonlinear model reduction for dynamical systems using sparse sensor locations from learned libraries, Phys. Rev. E., 92, (2015)
[30] Bagheri, S., Effects of weak noise on oscillating flows: linking quality factor, Floquet modes, and koopman spectrum, Phys. Fluids, 26, (2014)
[31] Hemati, M. S.; Williams, M. O.; Rowley, C. W., Dynamic mode decomposition for large and streaming datasets, Phys. Fluids, 26, (2014)
[32] Tu, J. H.; Rowley, C. W.; Kutz, J. N.; Shang, J. K., Spectral analysis of fluid flows using sub-Nyquist-rate PIV data, Exp. Fluids, 55, 1805, (2014)
[33] Guéniat, F.; Mathelin, L.; Pastur, L. R., A dynamic mode decomposition approach for large and arbitrarily sampled systems, Phys. Fluids, 27, (2015)
[34] Proctor, J. L.; Brunton, S. L.; Kutz, J. N., Dynamic mode decomposition with control, SIAM J. Appl. Dyn. Syst., 15, 142-161, (2016) · Zbl 1334.65199
[35] Annoni, J.; Seiler, P., A method to construct reduced-order parameter-varying models, Int. J. Robust. Nonlinear Control, (2016)
[36] B.R. Noack, Recursive dynamic mode decomposition of a cylinder wake, 2015. ArXiv e-prints arXiv:1511.06876v06871.
[37] He, G.; Wang, J.; Pan, C., Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake, J. Fluid. Mech., 718, 116-130, (2013) · Zbl 1284.76018
[38] Wan, Z.-H.; Zhou, L.; Wang, B.-F.; Sun, D.-J., Dynamic mode decomposition of forced spatially developed transitional jets, Eur. J. Mech. B Fluids, 51, 16-26, (2015) · Zbl 06932596
[39] Ducoin, A.; Loiseau, J. C.; Robinet, J. C., Numerical investigation of the interaction between laminar to turbulent transition and the wake of an airfoil, Eur. J. Mech. B Fluids, 57, 231-248, (2016) · Zbl 1408.76272
[40] Statnikov, V.; Bolgar, I.; Scharnowski, S.; Meinke, M.; Kähler, C. J.; Schröder, W., Analysis of characteristic wake flow modes on a generic transonic backward-facing step configuration, Eur. J. Mech. B Fluids, 59, 124-134, (2016) · Zbl 1408.76350
[41] Rowley, C. W.; Dawson, S. T.M., Model reduction for flow analysis and control, Annu. Rev. Fluid Mech., 49, 387-417, (2017) · Zbl 1359.76111
[42] Schmid, P. J.; Violato, D.; Scarano, F., Decomposition of time-resolved tomographic PIV, Exp. Fluids, 52, 1567-1579, (2012)
[43] Sayadi, T.; Schmid, Peter J.; Nichols, J. W.; Moin, P., Reduced-order representation of near-wall structures in the late transitional boundary layer, J. Fluid. Mech., 748, 278-301, (2014)
[44] Tu, J. H.; Rowley, C. W.; Luchtenburg, D. M.; Brunton, S. L.; Kutz, J. N., On dynamic mode decomposition: theory and applications, J. Comput. Dyn., 1, 391-421, (2014) · Zbl 1346.37064
[45] Tissot, G.; Cordier, L.; Benard, N.; Noack, B. R., Model reduction using dynamic mode decomposition, C. R. Mec., 342, 410-416, (2014)
[46] Mezić, I., Analysis of fluid flows via spectral properties of the koopman operator, Annu. Rev. Fluid Mech., 45, 357-378, (2013) · Zbl 1359.76271
[47] Bagheri, S., Koopman-mode decomposition of the cylinder wake, J. Fluid. Mech., 726, 596-623, (2013) · Zbl 1287.76116
[48] D.L. Donoho, M. Gavish, The optimal hard threshold for singular values is \(4 / \sqrt{} 3\), 2014. ArXiv e-prints. · Zbl 1360.94071
[49] P. Spalart, S. Allmaras, A one-equation turbulence model for aerodynamic flows. AIAA Paper, 1992, p. 0439.
[50] Gao, C.; Zhang, W.; Liu, Y.; Ye, Z.; Jiang, Y., Numerical study on the correlation of transonic single-degree-of-freedom flutter and buffet, Sci. China Phys. Mech., 58, (2015)
[51] Zhang, W.; Gao, C.; Liu, Y.; Ye, Z.; Jiang, Y., The interaction between flutter and buffet in transonic flow, Nonlinear Dynam., 82, 1851-1865, (2015)
[52] Y. Jiang, (Ph.D. dissertation), Northwestern Polytechnical University, Xi’an, China, 2013.
[53] Zhang, Q.; Liu, Y.; Wang, S., The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition, J. Fluid. Struct., 49, 53-72, (2014)
[54] Kou, J.; Zhang, W.; Gao, C., Modal analysis of transonic buffet based on POD and DMD techniques, Acta Aeronaut. Astronaut. Sin., 37, 2679-2689, (2016)
[55] Gao, C.; Zhang, W.; Ye, Z., Numerical study on closed-loop control of transonic buffet suppression by trailing edge flap, Comput. Fluids, 132, 32-45, (2016) · Zbl 1390.76270
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.