×

Machine learning and reduced order computation of a friction stir welding model. (English) Zbl 07518046

Summary: The friction stir welding process can be modeled using a system of heat transfer and Navier-Stokes equations with a shear dependent viscosity. Finding numerical solutions of this system of nonlinear partial differential equations over a set of parameter space, however, is extremely time-consuming. Therefore, it is desirable to find a computationally efficient method that can be used to obtain an approximation of the solution with acceptable accuracy. In this paper, we present a reduced basis method for solving the parametrized coupled system of heat and Navier-Stokes equations using a proper orthogonal decomposition (POD). In addition, we apply a machine learning algorithm based on an artificial neural network (ANN) to learn (approximately) the relationship between relevant parameters and the POD coefficients. Our computational experiments demonstrate that substantial speed-up can be achieved while maintaining sufficient accuracy.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
76Dxx Incompressible viscous fluids

Software:

redbKIT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tang, W.; Guo, X.; McClure, J. C.; Murr, L. E.; Nunes, A., Heat input and temperature distribution in friction stir welding, J. Mater. Process. Manuf. Sci., 7, 2, 163-172 (1988)
[2] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539-575 (1993)
[3] Sirovich, L., Turbulence and the dynamics of coherent structures I-III, Q. Appl. Math., 45, 3, 561-590 (1987) · Zbl 0676.76047
[4] Bui, D.; Hamdaoui, M.; De Vuyst, F., Reduced-order modeling of parametrized finite element solutions by POD-ISAT technique. Application to aircraft air control system, (International Conference on Computational Methods for Coupled Problems in Science and Engineering COUPLED PROBLEMS (2011))
[5] Giere, S., Numerical and Analytical Aspects of POD-Based Reduced-Order Modeling in Computational Fluid Dynamics (2016), PHD thesis
[6] Arora, A.; DebRoy, T.; Bhadeshia, H. K., Back-of-the-envelope calculations in friction stir welding velocities, peak temperature, torque, and hardness, Acta Mater., 59, 5, 2020-2028 (2011)
[7] Forinash, N., Solution of the Navier-Stokes Equations by the Finite Element Method Using Reduced Order Modeling (2012), PHD thesis
[8] Ravindran, S. S., Reduced-order controllers for control of flow past an airfoil, Int. J. Numer. Methods Fluids, 50, 5, 531-554 (2006) · Zbl 1094.76042
[9] Fraser, K. A., Robust and efficient meshfree solid thermo-mechanics simulation of friction stir welding (2016), PHD thesis
[10] Durdanović, M. B.; Mijajlović, M. M.; Milčić, D. S.; Stamenković, D. S., Heat generation during friction stir welding process, Tribol. Ind., 31, 1-2, 8-14 (2009)
[11] Higham, C. F.; Higham, D. J., Deep learning: an introduction for applied mathematicians, SIAM Rev., 61, 4, 860-891 (2019) · Zbl 1440.68214
[12] Nandan, R.; Roy, G. G.; Debroy, T., Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding, Metall. Mater. Trans. A, 37A, 1247-1259 (2006)
[13] Nandan, R.; Roy, G. G.; Lienert, T. J.; Debroy, T., Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel, Sci. Technol. Weld. Join., 11, 526-537 (2006)
[14] Nandan, R. G.; Roy, G. G.; Lienert, T. J.; Debroy, T., Three-dimensional heat and material flow during friction stir welding of mild steel, Acta Mater., 55, 3, 883-895 (2007)
[15] Nandan, R.; Lienert, T. J.; DebRoy, T., Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy, Int. J. Mater. Res., 99, 4, 434-444 (2008)
[16] Mundra, K.; Debroy, T.; Kelkar, K. M., Numerical prediction of fluid flow and heat transfer in welding with a moving heat source, Numer. Heat Transf., Part A, 29, 115-129 (1996)
[17] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169
[18] Sheppard, T.; Wright, D. S., Determination of flow stress: part 1 constitutive equation for aluminium alloys at elevated temperatures, Metals Technol., 215, 223 (1979)
[19] Zienkiewicz, O. C.; Cormeau, I. C., Visco-plasticity-plasticity and creep in elastic solids-a unified numerical solution approach, Int. J. Numer. Methods Biomed. Eng., 8, 821-845 (1974) · Zbl 0284.73021
[20] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C. C.; Navon, I. M.; Du, J.; Hu, G., Non-linear model reduction for the Navier-Stokes equations using residual DEIM method, J. Comput. Phys., 263, 1-8 (2014) · Zbl 1349.76288
[21] Fraser, K.; St-Georges, L.; Kiss, L. I., A mesh-free solid-mechanics approach for simulating the friction stir-welding process, (Joining Technologies (2016), InTech)
[22] Qian, E.; Kramer, B.; Marques, A. N.; Willcox, K., Transform & learn: a data-driven approach to nonlinear model reduction, (AIAA Aviation 2019 Forum (2019)), 3707
[23] Swischuk, R.; Mainini, L.; Peherstorfer, B.; Willcox, K., Projection-based model reduction: formulations for physics-based machine learning, Comput. Fluids, 179, 704-717 (2019) · Zbl 1411.65061
[24] Luo, Z.; Li, H.; Sun, P.; Gao, J., A reduced-order finite difference extrapolation algorithm based on POD technique for the non-stationary Navier-Stokes equations, Appl. Math. Model., 37, 5464-5473 (2013) · Zbl 1426.76478
[25] Stabile, G.; Rozza, G., Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations, Comput. Fluids, 173, 273-284 (2018) · Zbl 1410.76264
[26] Aling, H.; Banerjee, S.; Bangia, A. K.; Cole, V.; Ebert, J.; Emami-Naeini, A.; Jensen, K. F.; Kevrekidis, I. G.; Shvartsman, S., Nonlinear model reduction for simulation and control of rapid thermal processing, (Proceedings of the American Control Conference Albuquerque. Proceedings of the American Control Conference Albuquerque, New Mexico (June 1997))
[27] Vergari, L.; Cammi, A.; Lorenzi, S., Reduced order modeling approach for parametrized thermal-hydraulics problems: inclusion of the energy equation in the POD-FV-ROM method, Prog. Nucl. Energy, 118, Article 103071 pp. (2020)
[28] Georgaka, S.; Stabile, G.; Rozza, G.; Bluck, M. J., Parametric POD-Galerkin model order reduction for unsteady-state heat transfer problems, Commun. Comput. Phys., 27, 1, 1-32 (2020) · Zbl 1473.78016
[29] Hesthaven, J. S.; Ubbialia, S., Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363, 55-78 (2018) · Zbl 1398.65330
[30] Song, M.; Kovacevic, R., Thermal modeling of friction stir welding in a moving coordinate system and its validation, Int. J. Mach. Tools Manuf., 43, 605-615 (2003)
[31] Song, M.; Kovacevic, R., Numerical and experimental study of the heat transfer process in friction stir welding, Proc. Inst. Mech. Eng., B J. Eng. Manuf., 217, 1, 73-85 (2003)
[32] Song, M.; Kovacevic, R., Heat transfer modelling for both workpiece and tool in the friction stir welding process: a couple model, Proc. Inst. Mech. Eng., B J. Eng. Manuf. (2004)
[33] Fraser, K. A.; St-Georges, L.; Kiss, L. I., Optimization of friction stir welding tool advance speed via Monte-Carlo simulation of the friction stir welding process, Materials, 7, 3435-3452 (2014)
[34] Colegrove, P. A.; Shercliff, H. R., 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, J. Mater. Process. Technol., 169, 320-327 (2005)
[35] Fraser, K.; Kiss, L. I.; St-Georges, L.; Drolet, D., Optimization of friction stir weld joint quality using a meshfree fully-coupled thermo-mechanics approach, Metals, 101 (2018)
[36] Du, Y.; Mukherjee, T.; DebRoy, T., Conditions for void formation in friction stir welding from machine learning, NPJ Comput. Mater., 5, 68 (2019)
[37] Thomas, W. M.; Nicholas, E. D.; Needham, J. C.; Murch, M. G.; Temple-Smith, P.; Dawes, C. J., Friction-stir butt welding (1991), Great Britain Patent 9125978.8
[38] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations: An Introduction, vol. 92 (2015), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.