×

A nonlinear reduced order model with parametrized shape defects. (English) Zbl 1441.74262

Summary: We propose a formulation to derive a reduced order model for geometric nonlinearities which is shown to be valid for a set of parametrized defects. The latter are imposed in terms of the superposition of precomputed perturbations of the nominal structure’s 3D-mesh, and parametrized by their amplitudes. A reduced order model is then built once and for all using these defect shapes and the nominal model information only. A suitable reduced order basis is introduced as well in order to effectively represent the influence of the defects on the dynamics of the structure. In contrast to many nonlinear parametric reduced order models, the one we propose does not need any previous training of the model in the parameter space. In this way, prohibitively expensive full order simulations can be avoided and offline times are greatly reduced. Numerical tests are performed on a MEMS resonator and a silicon micro-beam to study the effect of shape imperfections on the dynamic response of the system.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74H45 Vibrations in dynamical problems in solid mechanics

Software:

TensorToolbox
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bathe, K.-J., Finite Element Procedures (2014)
[2] Craig, R.; Bampton, M., Coupling of Substructures for Dynamic Analyses 6, 1313-1319 (1968) · Zbl 0159.56202
[3] Rubin, S., Improved component-mode representation for structural dynamic analysis, AIAA J., 13, 995-1006 (1975), URL: http://arc.aiaa.org/doi/10.2514/3.60497 · Zbl 0334.70014
[4] Klerk, D. D.; Rixen, D. J.; Voormeeren, S. N., General framework for dynamic substructuring: History, review and classification of techniques, AIAA J., 46, 1169-1181 (2008), URL: http://arc.aiaa.org/doi/10.2514/1.33274
[5] Allen, M. S.; Rixen, D.; van der Seijs, M.; Tiso, P.; Abrahamsson, T.; Mayes, R. L., Substructuring in engineering dynamics, (CISM International Centre for Mechanical Sciences, vol. 594 (2020), Springer International Publishing: Springer International Publishing Cham), URL: http://link.springer.com/10.1007/978-3-030-25532-9
[6] Balajewicz, M.; Amsallem, D.; Farhat, C., Projection-based model reduction for contact problems, Internat. J. Numer. Methods Engrg., 106, 644-663 (2015) · Zbl 1352.74196
[7] Géradin, M.; Rixen, D. J., A ‘nodeless’ dual superelement formulation for structural and multibody dynamics application to reduction of contact problems, Internat. J. Numer. Methods Engrg., 106, 773-798 (2016), URL: http://doi.wiley.com/10.1002/nme.5136 · Zbl 1352.65343
[8] Blockmans, B.; Tamarozzi, T.; Naets, F.; Desmet, W., A nonlinear parametric model reduction method for efficient gear contact simulations, Internat. J. Numer. Methods Engrg., 102, 1162-1191 (2015), URL: http://doi.wiley.com/10.1002/nme.4831 · Zbl 1352.74197
[9] Pichler, F.; Witteveen, W.; Fischer, P., Reduced-order modeling of preloaded bolted structures in multibody systems by the use of trial vector derivatives, J. Comput. Nonlinear Dyn., 12, Article 051032 pp. (2017), URL: http://computationalnonlinear.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4036989
[10] Wu, L.; Tiso, P., Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach, Multibody Syst. Dyn., 36, 405-425 (2016), URL: http://dx.doi.org/10.1007/s11044-015-9476-5 · Zbl 1352.70018
[11] Wu, L.; Tiso, P.; Tatsis, K.; Chatzi, E.; van Keulen, F., A modal derivatives enhanced Rubin substructuring method for geometrically nonlinear multibody systems, Multibody Syst. Dyn., 45, 57-85 (2019), URL: http://link.springer.com/10.1007/s11044-018-09644-2 · Zbl 1412.70014
[12] Kuether, R. J.; Deaner, B. J.; Hollkamp, J. J.; Allen, M. S., Evaluation of geometrically nonlinear reduced-order models with nonlinear normal modes, AIAA J., 52, 3273-3285 (2015)
[13] Hollkamp, J. J.; Gordon, R. W., Reduced-order models for nonlinear response prediction: Implicit condensation and expansion, J. Sound Vib., 318, 1139-1153 (2008)
[14] Touzé, C.; Vidrascu, M.; Chapelle, D., Direct finite element computation of non-linear modal coupling coefficients for reduced-order shell models, Comput. Mech., 54, 567-580 (2014) · Zbl 1301.74048
[15] Jain, S.; Tiso, P., Simulation-free hyper-reduction for geometrically nonlinear structural dynamics: A quadratic manifold lifting approach, J. Comput. Nonlinear Dyn., 13, 1-12 (2018), URL: http://computationalnonlinear.asmedigitalcollection.asme.org/article.aspx?articleid=2679584
[16] Ryckelynck, D., A priori hyperreduction method: an adaptive approach, J. Comput. Phys., 202, 346-366 (2005), URL: https://linkinghub.elsevier.com/retrieve/pii/S002199910400289X · Zbl 1288.65178
[17] Noor, A. K.; Peterst, J. M., Reduced basis technique for nonlinear analysis of structures, AIAA J., 18, 455-462 (1980), URL: http://arc.aiaa.org/doi/abs/10.2514/3.50778
[18] Mignolet, M. P.; Przekop, A.; Rizzi, S. A.; Spottswood, S. M., A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures, J. Sound Vib., 332, 2437-2460 (2013), URL: http://dx.doi.org/10.1016/j.jsv.2012.10.017
[19] Amabili, M., Reduced-order models for nonlinear vibrations, based on natural modes: the case of the circular cylindrical shell, Phil. Trans. R. Soc. A, 371, Article 20120474 pp. (2013), URL: https://royalsocietypublishing.org/doi/10.1098/rsta.2012.0474 · Zbl 1327.74073
[20] Idelsohn, S. R.; Cardona, A., A reduction method for nonlinear structural dynamic analysis, Comput. Methods Appl. Mech. Engrg., 49, 253-279 (1985), URL: http://linkinghub.elsevier.com/retrieve/pii/0045782585901252 · Zbl 0546.73054
[21] Sombroek, C. S.; Tiso, P.; Renson, L.; Kerschen, G., Numerical computation of nonlinear normal modes in a modal derivative subspace, Comput. Struct., 195, 34-46 (2018), URL: https://doi.org/10.1016/j.compstruc.2017.08.016
[22] Acar, C.; Shkel, A., MEMS Vibratory Gyroscopes, 256 (2008), Springer
[23] Farokhi, H.; Ghayesh, M. H.; Amabili, M., Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory, Internat. J. Engrg. Sci., 68, 11-23 (2013) · Zbl 1423.74473
[24] Kołakowski, P.; Wikło, M.; Holnicki-Szulc, J., The virtual distortion method - A versatile reanalysis tool for structures and systems, Struct. Multidiscip. Optim., 36, 217-234 (2008)
[25] Kirsch, U.; Bogomolni, M.; Sheinman, I., Nonlinear dynamic reanalysis of structures by combined approximations, Comput. Methods Appl. Mech. Engrg., 195, 4420-4432 (2006) · Zbl 1119.74020
[26] Kirsch, U., A unified reanalysis approach for structural analysis, design, and optimization, Struct. Multidiscip. Optim., 25, 67-85 (2003)
[27] M. Zeoli, F. van Keulen, M. Langelaar, Fast reanalysis of geometrically nonlinear problems after shape modifications, in: 6th World Congresses of Structural and Multidisciplinary Optimization, June, Rio de Janeiro, 2005, pp. 1-11,.
[28] Daniel, L.; Siong, O. C.; Chay, L. S., A multiparameter moment matching model reduction approach for generating geometrically parameterized interconnect performance models, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 23, 1-15 (2004)
[29] Fröhlich, B.; Gade, J.; Geiger, F.; Bischoff, M.; Eberhard, P., Geometric element parameterization and parametric model order reduction in finite element based shape optimization, Comput. Mech. (2018), URL: http://link.springer.com/10.1007/s00466-018-1626-1
[30] van Ophem, S.; Deckers, E.; Desmet, W., Parametric model order reduction without a priori sampling for low rank changes in vibro-acoustic systems, Mech. Syst. Signal Process., 130, 597-609 (2019), URL: https://linkinghub.elsevier.com/retrieve/pii/S0888327019303449
[31] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57, 483-531 (2015), URL: http://epubs.siam.org/doi/10.1137/130932715 · Zbl 1339.37089
[32] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C. C.; Navon, I. M.; Muggeridge, A., Non-intrusive reduced order modelling of the Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 293, 522-541 (2015), URL: http://dx.doi.org/10.1016/j.cma.2015.05.015 · Zbl 1423.76287
[33] Xiao, D.; Fang, F.; Pain, C. C.; Navon, I. M., A parameterized non-intrusive reduced order model and error analysis for general time-dependent nonlinear partial differential equations and its applications, Comput. Methods Appl. Mech. Engrg., 317, 868-889 (2017) · Zbl 1439.65124
[34] Hesthaven, J. S.; Ubbiali, S., Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys., 363, 55-78 (2018) · Zbl 1398.65330
[35] Oulghelou, M.; Allery, C., Non intrusive method for parametric model order reduction using a bi-calibrated interpolation on the Grassmann manifold, 1-25 (2018) · Zbl 07510048
[36] Zimmermann, R., Manifold interpolation and model reduction, 1-36 (2019)
[37] Le Guennec, Y.; Brunet, J. P.; Daim, F. Z.; Chau, M.; Tourbier, Y., A parametric and non-intrusive reduced order model of car crash simulation, Comput. Methods Appl. Mech. Engrg., 338, 186-207 (2018) · Zbl 1440.74298
[38] Wang, X. Q.; Phlipot, G. P.; Perez, R. A.; Mignolet, M. P., Locally enhanced reduced order modeling for the nonlinear geometric response of structures with defects, Int. J. Non-Linear Mech., 101, 1-7 (2018)
[39] Wang, X. Q.; O’Hara, P. J.; Mignolet, M. P.; Hollkamp, J. J., Reduced order modeling with local enrichment for the nonlinear geometric response of a cracked panel, AIAA J., 57, 421-436 (2018)
[40] Budiansky, B., Dynamic buckling of elastic structures: Criteria and estimates, (Proceedings of an International Conference Held At Northwestern University, Evanston, Illinois (1967), Pergamon Press Ltd), URL: http://linkinghub.elsevier.com/retrieve/pii/B9781483198217500107 · Zbl 0168.45401
[41] Koiter, W. T., Elastic stability, buckling and post-buckling behaviour, (Proceedings of the IUTAM Symposium on Finite Elasticity (1981), Springer Netherlands), 13-24
[42] Wedel-Heinen, J., Vibration of geometrically imperfect beam and shell structures, Int. J. Solids Struct., 27, 29-47 (1991), URL: http://dx.doi.org/10.1016/0020-7683(91)90143-4
[43] Jansen, E. L., A perturbation method for nonlinear vibrations of imperfect structures: Application to cylindrical shell vibrations, Int. J. Solids Struct., 45, 1124-1145 (2008) · Zbl 1167.74442
[44] Tiso, P., Finite Element Based Reduction Methods for Static and Dynamic Analysis of Thin-Walled Structures (2006), Technische Universiteit Delft, (Ph.D. thesis)
[45] Lassila, T.; Rozza, G., Parametric free-form shape design with PDE models and reduced basis method, Comput. Methods Appl. Mech. Engrg., 199, 1583-1592 (2010) · Zbl 1231.76245
[46] Crisfield, M. A., Non-Linear Finite Element Analysis of Solids and Structures, Volume 1 (1991), URL: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470666447.html · Zbl 0809.73005
[47] Jain, S., Model Order Reduction for Non-linear Structural Dynamics (2015), TU Delft, URL: https://repository.tudelft.nl/islandora/object/uuid
[48] Bader, B. W.; Kolda, T. G., MATLAB tensor toolbox version 3.0-dev, Available online (2017), URL: https://www.tensortoolbox.org
[49] Jain, S.; Tiso, P.; Rutzmoser, J. B.; Rixen, D. J., A quadratic manifold for model order reduction of nonlinear structural dynamics, Comput. Struct., 188, 80-94 (2017)
[50] Hay, A.; Borggaard, J.; Akhtar, I.; Pelletier, D., Reduced-order models for parameter dependent geometries based on shape sensitivity analysis, J. Comput. Phys., 229, 1327-1352 (2010) · Zbl 1329.76058
[51] Tiso, P., Optimal second order reduction basis selection for nonlinear transient analysis, (Proceedings of the 29th IMAC a Conference on Structural Dynamics 2011, volume 3 (2011)), 27-39
[52] Weinberg, M. S.; Kourepenis, A., Error sources in in-plane silicon tuning-fork MEMS gyroscopes, J. Microelectromech. Syst., 15, 479-491 (2006)
[53] Izadi, M.; Braghin, F.; Giannini, D.; Milani, D.; Resta, F.; Brunetto, M. F.; Falorni, L. G.; Gattere, G.; Guerinoni, L.; Valzasina, C., A comprehensive model of beams’ anisoelasticity in mems gyroscopes, with focus on the effect of axial non-vertical etching, (5th IEEE International Symposium on Inertial Sensors and Systems, INERTIAL 2018 - Proceedings (2018)), 1-4
[54] Pivovarov, D.; Willner, K.; Steinmann, P.; Brumme, S.; Müller, M.; Srisupattarawanit, T.; Ostermeyer, G.-P.; Henning, C.; Ricken, T.; Kastian, S.; Reese, S.; Moser, D.; Grasedyck, L.; Biehler, J.; Pfaller, M.; Wall, W.; Kohlsche, T.; von Estorff, O.; Gruhlke, R.; Eigel, M.; Ehre, M.; Papaioannou, I.; Straub, D.; Leyendecker, S., Challenges of order reduction techniques for problems involving polymorphic uncertainty, GAMM-Mitteilungen, 42, e201900011 (2019), https://onlinelibrary.wiley.com/doi/abs/10.1002/gamm.201900011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.