×

Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction. (English) Zbl 1378.65145

Summary: Least-squares Petrov-Galerkin (LSPG) model-reduction techniques such as the Gauss-Newton with approximated tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge-Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
76M25 Other numerical methods (fluid mechanics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abgrall, R.; Amsallem, D., Robust model reduction by \(l^1\)-norm minimization and approximation via dictionaries: application to linear and nonlinear hyperbolic problems (2015), Stanford University Preprint
[2] Alexander, R., Diagonally implicit Runge-Kutta methods for stiff ODE’s, SIAM J. Numer. Anal., 14, 1006-1021 (1977) · Zbl 0374.65038
[3] Amsallem, D.; Zahr, M.; Washabaugh, K., Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction, Special Issue on Model Reduction of Parameterized Systems. Special Issue on Model Reduction of Parameterized Systems, Adv. Comput. Math., 41, 1187-1230 (2015) · Zbl 1331.65094
[4] An, S.; Kim, T.; James, D., Optimizing cubature for efficient integration of subspace deformations, ACM Trans. Graph. (TOG), 27, 165 (2008)
[5] Antil, H.; Field, S.; Herrmann, F.; Nochetto, R.; Tiglio, M., Two-step greedy algorithm for reduced order quadratures, J. Sci. Comput., 57, 604-637 (2013) · Zbl 1292.65024
[6] Antil, H.; Heinkenschloss, M.; Sorensen, D. C., Application of the discrete empirical interpolation method to reduced order modeling of nonlinear and parametric systems, (Rozzar, G., Reduced Order Methods for Modeling and Computational Reduction. Reduced Order Methods for Modeling and Computational Reduction, MS&A. Model. Simul. Appl., vol. 8 (2013), Springer-Verlag: Springer-Verlag Italia, Milano)
[7] Astrid, P.; Weiland, S.; Willcox, K.; Backx, T., Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Autom. Control, 53, 2237-2251 (2008) · Zbl 1367.93110
[8] Aubry, N.; Holmes, P.; Lumley, J. L.; Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech., 192, 115-173 (1988) · Zbl 0643.76066
[9] Balajewicz, M.; Dowell, E., Stabilization of projection-based reduced order models of the Navier-Stokes equations, Nonlinear Dyn., 70, 1619-1632 (2012)
[10] Balajewicz, M.; Dowell, E.; Noack, B., Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier-Stokes equation, J. Fluid Mech., 729, 285-308 (2013) · Zbl 1291.76164
[11] Barone, M. F.; Kalashnikova, I.; Segalman, D. J.; Thornquist, H. K., Stable Galerkin reduced order models for linearized compressible flow, J. Comput. Phys., 228, 1932-1946 (2009) · Zbl 1162.76025
[12] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci., Ser. 1 Math., 339, 667-672 (2004) · Zbl 1061.65118
[13] Benner, P.; Gugercin, S.; Willcox, K., A survey of model reduction methods for parametric systems, SIAM Rev., 57, 483-531 (2015) · Zbl 1339.37089
[14] Bergmann, M.; Bruneau, C.-H.; Iollo, A., Enablers for robust pod models, J. Comput. Phys., 228, 516-538 (2009) · Zbl 1409.76099
[15] Blackford, L.; Cleary, A.; Choi, J.; d’Azevedo, E.; Demmel, J.; Dhillon, I.; Dongarra, J.; Hammarling, S.; Henry, G.; Petitet, A., ScaLAPACK Users’ Guide (1997), Society for Industrial and Applied Mathematics · Zbl 0886.65022
[16] Bos, R.; Bombois, X.; Van den Hof, P., Accelerating large-scale non-linear models for monitoring and control using spatial and temporal correlations, (Proceedings of the American Control Conference, vol. 4 (2004)), 3705-3710
[17] Bui-Thanh, T.; Willcox, K.; Ghattas, O., Model reduction for large-scale systems with high-dimensional parametric input space, SIAM J. Sci. Comput., 30, 3270-3288 (2008) · Zbl 1196.37127
[18] Carlberg, K., Model Reduction of Nonlinear Mechanical Systems via Optimal Projection and Tensor Approximation (August 2011), Stanford University, PhD thesis
[19] Carlberg, K.; Bou-Mosleh, C.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Int. J. Numer. Methods Eng., 86, 155-181 (2011) · Zbl 1235.74351
[20] Carlberg, K.; Cortial, J.; Amsallem, D.; Zahr, M.; Farhat, C., The GNAT nonlinear model reduction method and its application to fluid dynamics problems, (6th AIAA Theoretical Fluid Mechanics Conference. 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI (2011)), AIAA Paper 2011-3112
[21] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242, 623-647 (2013) · Zbl 1299.76180
[22] Carlberg, K.; Tuminaro, R.; Boggs, P., Efficient structure-preserving model reduction for nonlinear mechanical systems with application to structural dynamics, (53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April 23-26 (2012)), AIAA Paper 2012-1969
[23] Carlberg, K.; Tuminaro, R.; Boggs, P., Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM J. Sci. Comput., 37, B153-B184 (2015) · Zbl 1320.65193
[24] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 2737-2764 (2010) · Zbl 1217.65169
[25] Constantine, P.; Wang, Q., Residual minimizing model reduction for parameterized nonlinear dynamical systems, SIAM J. Sci. Comput., 34, A2118-A2144 (2012) · Zbl 1259.65110
[26] Drohmann, M.; Haasdonk, B.; Ohlberger, M., Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34, A937-A969 (2012) · Zbl 1259.65133
[27] Everson, R.; Sirovich, L., Karhunen-Loève procedure for gappy data, J. Opt. Soc. Am. A, 12, 1657-1664 (1995)
[28] Fang, F.; Pain, C.; Navon, I.; Elsheikh, A.; Du, J.; Xiao, D., Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods, J. Comput. Phys., 234, 540-559 (2013) · Zbl 1284.65132
[29] Farhat, C.; Avery, P.; Chapman, T.; Cortial, J., Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency, Int. J. Numer. Methods Eng., 98, 625-662 (2014) · Zbl 1352.74348
[30] Farhat, C.; Geuzaine, P.; Brown, G., Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an F-16 fighter, Comput. Fluids, 32, 3-29 (2003) · Zbl 1009.76518
[31] Foias, C.; Jolly, M.; Kevrekidis, I.; Titi, E., Dissipativity of numerical schemes, Nonlinearity, 4, 591 (1991) · Zbl 0734.65080
[32] Galbally, D.; Fidkowski, K.; Willcox, K.; Ghattas, O., Non-linear model reduction for uncertainty quantification in large-scale inverse problems, Int. J. Numer. Methods Eng., 81, 1581-1608 (2009) · Zbl 1183.76837
[33] Galletti, B.; Bruneau, C.; Zannetti, L.; Iollo, A., Low-order modelling of laminar flow regimes past a confined square cylinder, J. Fluid Mech., 503, 161-170 (2004) · Zbl 1116.76344
[34] Geuzaine, P.; Brown, G.; Harris, C.; Farhat, C., Aeroelastic dynamic analysis of a full F-16 configuration for various flight conditions, AIAA J., 41, 363-371 (2003)
[35] Holmes, P.; Lumley, J.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996), Cambridge University Press · Zbl 0890.76001
[36] Iollo, A.; Lanteri, S.; Desideri, J. A., Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations, Theor. Comput. Fluid Dyn., 13, 377-396 (2000) · Zbl 0987.76077
[37] Jolly, M.; Kevrekidis, I.; Titi, E., Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation, J. Dyn. Differ. Equ., 3, 179-197 (1991) · Zbl 0738.35024
[38] Kalashnikova, I.; Barone, M., On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far-field boundary treatment, Int. J. Numer. Methods Eng., 83, 1345-1375 (2010) · Zbl 1202.74123
[39] Lall, S.; Krysl, P.; Marsden, J., Structure-preserving model reduction for mechanical systems, Physica D, 184, 304-318 (2003) · Zbl 1041.70011
[40] LeGresley, P. A., Application of Proper Orthogonal Decomposition (POD) to Design Decomposition Methods (2006), Stanford University, PhD thesis
[41] Marion, M.; Temam, R., Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 1139-1157 (1989) · Zbl 0683.65083
[42] Ngoc Cuong, N.; Veroy, K.; Patera, A. T., Certified real-time solution of parametrized partial differential equations, (Yip, S., Handbook of Materials Modeling (2005), Springer: Springer Netherlands), 1529-1564
[43] Noack, B. R.; Papas, P.; Monkewitz, P. A., The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows, J. Fluid Mech., 523, 339-365 (2005) · Zbl 1065.76102
[44] Prud’homme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G., Reliable real-time solution of parameterized partial differential equations: reduced-basis output bound methods, J. Fluids Eng., 124, 70-80 (2002)
[45] Rathinam, M.; Petzold, L. R., A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41, 1893-1925 (2003) · Zbl 1053.65106
[46] Rempfer, D., On low-dimensional Galerkin models for fluid flow, Theor. Comput. Fluid Dyn., 14, 75-88 (2000) · Zbl 0984.76068
[47] Rowley, C. W.; Colonius, T.; Murray, R. M., Model reduction for compressible flows using POD and Galerkin projection, Physica D, 189, 115-129 (2004) · Zbl 1098.76602
[48] Rozza, G.; Huynh, D. B.P.; Patera, A. T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch. Comput. Methods Eng., 15, 229-275 (2008) · Zbl 1304.65251
[49] Ryckelynck, D., A priori hyperreduction method: an adaptive approach, J. Comput. Phys., 202, 346-366 (2005) · Zbl 1288.65178
[50] San, O.; Iliescu, T., Proper orthogonal decomposition closure models for fluid flows: Burgers equation (2013), arXiv preprint
[51] Shen, J., Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38, 201-229 (1990) · Zbl 0684.65095
[52] Sirisup, S.; Karniadakis, G., A spectral viscosity method for correcting the long-term behavior of POD models, J. Comput. Phys., 194, 92-116 (2004) · Zbl 1136.76412
[53] Sirovich, L., Turbulence and the dynamics of coherent structures. III: Dynamics and scaling, Q. Appl. Math., 45, 583-590 (1987) · Zbl 0676.76047
[54] Spalart, P.; Allmaras, S., A one-equation turbulence model for aerodynamic flows, Rech. Aérosp., 1, 5 (1994)
[55] Veroy, K.; Patera, A. T., Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, Int. J. Numer. Methods Fluids, 47, 773-788 (2005) · Zbl 1134.76326
[56] Veroy, K.; Prud’homme, C.; Rovas, D. V.; Patera, A. T., A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, (16th AIAA Computational Fluid Dynamics Conference. 16th AIAA Computational Fluid Dynamics Conference, Orlando, FL (2003)), AIAA Paper 2003-3847
[57] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Comput. Methods Appl. Mech. Eng., 237, 10-26 (2012) · Zbl 1253.76050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.