×

Reduction of nonlinear embedded boundary models for problems with evolving interfaces. (English) Zbl 1352.65322

Summary: Embedded boundary methods alleviate many computational challenges, including those associated with meshing complex geometries and solving problems with evolving domains and interfaces. Developing model reduction methods for computational frameworks based on such methods seems however to be challenging. Indeed, most popular model reduction techniques are projection-based, and rely on basis functions obtained from the compression of simulation snapshots. In a traditional interface-fitted computational framework, the computation of such basis functions is straightforward, primarily because the computational domain does not contain in this case a fictitious region. This is not the case however for an embedded computational framework because the computational domain typically contains in this case both real and ghost regions whose definitions complicate the collection and compression of simulation snapshots. The problem is exacerbated when the interface separating both regions evolves in time. This paper addresses this issue by formulating the snapshot compression problem as a weighted low-rank approximation problem where the binary weighting identifies the evolving component of the individual simulation snapshots. The proposed approach is application independent and therefore comprehensive. It is successfully demonstrated for the model reduction of several two-dimensional, vortex-dominated, fluid-structure interaction problems.

MSC:

65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Software:

SLRA; ReALE; FIVER
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Donea, J., An arbitrary Lagrangian-Eulerian finite element method for transient fluid-structure interactions, Comput. Methods Appl. Mech. Eng., 33, 689-723 (1982) · Zbl 0508.73063
[2] Farhat, C.; Lesoinne, M.; Maman, N., Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution, Int. J. Numer. Methods Fluids, 21, 807-835 (1995) · Zbl 0865.76038
[3] Farhat, C.; Rallu, A.; Wang, K.; Belytschko, T., Robust and provably second-order explicit-explicit and implicit-explicit staggered time-integrators for highly nonlinear fluid-structure interaction problems, Int. J. Numer. Methods Eng., 84, 73-107 (2010) · Zbl 1202.74167
[4] Loubère, R.; Maire, P. H.; Shashkov, M.; Breil, J.; Galéra, S., ReALE: a reconnection-based arbitrary-Lagrangian-Eulerian method, J. Comput. Phys., 229, 4724-4761 (2010) · Zbl 1305.76067
[5] Farhat, C.; Degand, C.; Koobus, B.; Lesoinne, M., Torsional springs for two-dimensional dynamic unstructured fluid meshes, Comput. Methods Appl. Mech. Eng., 163, 231-245 (1998) · Zbl 0961.76070
[6] Degand, C.; Farhat, C., A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput. Struct., 80, 305-316 (2002)
[7] Fossati, M.; Khurram, R. A.; Habashi, W. G., An ALE mesh movement scheme for long-term in-flight ice accretion, Int. J. Numer. Methods Fluids, 68, 958-976 (2012) · Zbl 1426.76259
[8] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 0, 479-517 (2002) · Zbl 1123.74309
[9] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[10] Wang, K.; Rallu, A.; Gerbeau, J. F.; Farhat, C., Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid-structure interaction problems, Int. J. Numer. Methods Fluids, 67, 9, 1175-1206 (2011) · Zbl 1426.76436
[11] Farhat, C.; Gerbeau, J.-F.; Rallu, A., FIVER: a finite volume method based on exact two-phase Riemann problems and sparse grids for multi-material flows with large density jumps, J. Comput. Phys., 231, 6360-6379 (2012) · Zbl 1284.76264
[12] Rewieński, M.; White, J., Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations, Linear Algebra Appl., 415, 2, 426-454 (2006) · Zbl 1105.93020
[13] Lieu, T.; Farhat, C.; Lesoinne, M., Reduced-order fluid/structure modeling of a complete aircraft configuration, Comput. Methods Appl. Mech. Eng., 195, 5730-5742 (2006) · Zbl 1124.76042
[14] Amsallem, D.; Farhat, C., An interpolation method for adapting reduced-order models and application to aeroelasticity, AIAA J., 46, 1803-1813 (2008)
[15] Astrid, P.; Weiland, S.; Willcox, K.; Backx, T., Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Autom. Control, 53, 10, 2237-2251 (2008) · Zbl 1367.93110
[16] Chaturantabut, S.; Sorensen, D., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169
[17] Carlberg, K.; Bou-Mosleh, C.; Farhat, C., Efficient nonlinear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Int. J. Numer. Methods Eng., 86, 2, 155-181 (2011) · Zbl 1235.74351
[18] Farhat, C.; Avery, P.; Chapman, T.; Cortial, J., Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency, Int. J. Numer. Methods Eng., 98, 9, 625-662 (2014) · Zbl 1352.74348
[19] Balajewicz, M. J.; Dowell, E. H.; Noack, B. R., Low-dimensional modelling of high-Reynolds-number shear flows incorporating constraints from the Navier-Stokes equation, J. Fluid Mech., 729, 285-308 (2013) · Zbl 1291.76164
[20] Balajewicz, M.; Dowell, E., Stabilization of projection-based reduced order models of the Navier-Stokes equations, Nonlinear Dyn., 70, 2, 1619-1632 (2012)
[21] Balajewicz, M.; Dowell, E., Reduced-order modeling of flutter and limit-cycle oscillations using the sparse Volterra series, J. Aircr., 49, 6, 1803-1812 (2012)
[22] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The GNAT method for nonlinear model reduction: effective implementation and application to computational fluid dynamics and turbulent flows, J. Comput. Phys., 242, 623-647 (2013) · Zbl 1299.76180
[23] Du, J.; Fang, F.; Pain, C. C.; Navon, I. M.; Zhu, J.; Ham, D. A., POD reduced-order unstructured mesh modeling applied to 2D and 3D fluid flow, Comput. Math. Appl., 65, 362-379 (2013) · Zbl 1319.76026
[24] Xiao, D.; Fang, F.; Buchan, A. G.; Pain, C. C.; Navon, I. M.; Du, J.; Hu, G., Non-linear model reduction for the Navier-Stokes equations using residual DEIM method, J. Comput. Phys., 263, 1-18 (2013) · Zbl 1349.76288
[25] Srebro, N.; Jaakkola, T., Weighted low-rank approximations, (ICML, vol. 3 (2003)), 720-727
[26] Buchanan, A. M.; Fitzgibbon, A. W., Damped newton algorithms for matrix factorization with missing data, (CVPR, 2005. CVPR, 2005, Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2 (2005), IEEE), 316-322
[27] Chen, P., Optimization algorithms on subspaces: revisiting missing data problem in low-rank matrix, Int. J. Comput. Vis., 80, 1, 125-142 (2008)
[28] Donoho, D. L., Compressed sensing, IEEE Trans. Inf. Theory, 52, 4, 1289-1306 (2006) · Zbl 1288.94016
[29] Candès, E. J., The restricted isometry property and its implications for compressed sensing, C. R. Math., 346, 9, 589-592 (2008) · Zbl 1153.94002
[30] Candès, E. J.; Recht, B., Exact matrix completion via convex optimization, Found. Comput. Math., 9, 6, 717-772 (2009) · Zbl 1219.90124
[31] Cai, J. F.; Candès, E. J.; Shen, Z., A singular value thresholding algorithm for matrix completion, SIAM J. Optim., 20, 4, 1956-1982 (2010) · Zbl 1201.90155
[32] Jain, P.; Netrapalli, P.; Sanghavi, S., Low-rank matrix completion using alternating minimization, (Proceedings of the 45th Annual ACM Symposium on Theory of Computing (2013), ACM), 665-674 · Zbl 1293.65073
[33] Vandereycken, B., Low-rank matrix completion by Riemannian optimization, SIAM J. Optim., 23, 2, 1214-1236 (2013) · Zbl 1277.15021
[34] Okatani, T.; Deguchi, K., On the Wiberg algorithm for matrix factorization in the presence of missing components, Int. J. Comput. Vis., 72, 3, 329-337 (2007) · Zbl 1477.68404
[35] Mitra, K.; Sheorey, S.; Chellappa, R., Large-scale matrix factorization with missing data under additional constraints, (Advances in Neural Information Processing Systems (2010)), 1651-1659
[36] Markovsky, I., Low Rank Approximation: Algorithms, Implementation, Applications, Communications and Control Engineering (2012), Springer
[37] Markovsky, I.; Usevich, K., Software for weighted structured low-rank approximation, J. Comput. Appl. Math., 256, 278-292 (2013) · Zbl 1314.65067
[38] Zeng, X.; Farhat, C., A systematic approach for constructing higher-order immersed boundary and ghost fluid methods for fluid and fluid-structure interaction problems, J. Comput. Phys., 231, 2892-2923 (2012) · Zbl 1426.76443
[39] Bui-Thanh, T.; Willcox, K.; Ghattas, O., Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications, AIAA J., 46, 10, 2520-2529 (2008)
[40] Veroy, K.; Patera, A. T., Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, Int. J. Numer. Methods Fluids, 47, 8-9, 773-788 (2005) · Zbl 1134.76326
[41] Daescu, D. N.; Navon, I. M., A dual-weighted approach to order reduction in 4D-var data assimilation, Mon. Weather Rev., 136, 3, 1026-1041 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.