×

Strong and weak constraint variational assimilations for reduced order fluid flow modeling. (English) Zbl 1401.76060

Summary: We propose and evaluate two variational data assimilation techniques for the estimation of low order surrogate experimental dynamical models for fluid flows. Both methods are built from optimal control recipes and rely on proper orthogonal decomposition and a Galerkin projection of the Navier-Stokes equation. The techniques proposed differ in the control variables they involve. The first one introduces a weak dynamical model defined only up to an additional uncertainty time-dependent function, whereas the second one handles a strong dynamical constraint in which the dynamical system’s coefficients constitute the control variables. Both choices correspond to different approximations of the relation between the reduced basis on which is expressed the motion field and the basis components that have been neglected in the reduced order model construction. The techniques have been assessed on numerical data and for real experimental conditions with noisy particle image velocimetry data.

MSC:

76D55 Flow control and optimization for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D25 Wakes and jets
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Aling, S. Banerjee, A.K. Bangia, V. Cole, J.L. Ebert, A. Emami-Naeini, K.F. Jensen, I.G. Kevrekidis, and S. Shvartsman. Nonlinear model reduction for simulation and control of rapid thermal processing. in: Proceedings of the American Control Conference, 1997, pp. 2233-2238.; H. Aling, S. Banerjee, A.K. Bangia, V. Cole, J.L. Ebert, A. Emami-Naeini, K.F. Jensen, I.G. Kevrekidis, and S. Shvartsman. Nonlinear model reduction for simulation and control of rapid thermal processing. in: Proceedings of the American Control Conference, 1997, pp. 2233-2238.
[2] Bangia, A.; Batcho, P.; Kevrekidis, I.; Karniadakis, G., Unsteady two-dimensional flows in complex geometries: comparative bifurcation studies with global eigenfunction expansions, SIAM J. Sci. Comput., 18, 3, 775-805 (1997) · Zbl 0873.58058
[3] Bergmann, M.; Cordier, L., Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models, J. Comput. Phys., 227, 16, 7813-7840 (2008) · Zbl 1388.76073
[4] Boree, J., Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows, Exp. Fluids, 35, 188-192 (2003)
[5] Cao, Y.; Zhu, J.; Navon, I. M.; Luo, Z., A reduced order approach to four-dimensional variational data assimilation using proper orthogonal decomposition, Int. J. Numer. Methods Fluids, 53, 10, 1571-1583 (2007) · Zbl 1370.86002
[6] Carr, J., Applications of Center Manifold Theory (1981), Springer-Verlag
[7] Cazemier, W.; Verstappen, R.; Veldman, A., Proper orthogonal decomposition and low-dimensional models for driven cavity flows, Phys. Fluids, 10, 7, 1685-1699 (1998)
[8] Constantin, P.; Foias, C.; Nicolaenko, B.; Temam, R., Integral Manifolds and Inertial. Manifolds for Dissipative Partial Differential Equations (1989), Spinger-Verlag: Spinger-Verlag New-York, USA · Zbl 0683.58002
[9] Couplet, M.; Basdevant, C.; Sagaut, P., Calibrated reduced-order POD-Galerkin system for fluid flow modeling, J. Comput. Phys., 207, 1, 192-220 (2005) · Zbl 1177.76283
[10] D’Adamo, J.; Papadakis, N.; Memin, E.; Artana, G., Variational assimilation of POD low-order dynamical systems, J. Turbul., 8, 9, 1-22 (2007) · Zbl 1273.76133
[11] Deane, A.; Kevrekidis, I.; Karniadakis, G.; Orszag, S., Low-dimensional models for complex geometry fows: Application to grooved channels and circular cylinders, Phys. Fluids, 3, 10, 2337 (1991) · Zbl 0746.76021
[12] Delville, J.; Ukeiley, L.; Cordier, L.; Bonnetand, J.-P.; Glauser, M., Examination of large scale structures in a turbulent mixing layer Part. 1, J. Fluid Mech., 391, 91-122 (1999) · Zbl 0995.76030
[13] Fang, F.; Pain, C. C.; Navon, I. M.; Piggott, M. D.; Gorman, G. J.; Goddard, A. J.H., Reduced order modelling of an adaptive mesh ocean model, Int. J. Numer. Methods Fluids, 59, 8, 827-851 (2009) · Zbl 1155.86004
[14] Foias, C.; Sell, G.; Titi, E. S., Exponential tracking and approximation of inertial manifolds for dissipative equation, Int. J. Dyn. Differ Eq., 1, 199-224 (1989) · Zbl 0692.35053
[15] Galetti, B.; Botaro, A.; Bruneau, C.-H.; Iollo, A., Accurate model reduction of transient and forced wakes, Euro. J. Mech. B Fluids, 26, 3, 354-366 (2007) · Zbl 1150.76019
[16] Galetti, B.; Bruneau, C.-H.; Zanetti, L.; Iollo, A., Low-order modelling of laminar flow regimes past a confined square cylinder, J. Fluid Mech., 503, 161-170 (2004) · Zbl 1116.76344
[17] Karamanos, G.; Karniadakis, G., A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., 163, 1, 22-50 (2000) · Zbl 0984.76036
[18] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coherence Structures, Dynamical Systems and Symmetry (1996), Cambridge university press · Zbl 0890.76001
[19] Jorgensen, B. H.; Sorensen, J. N.; Brons, M., Low-dimensional modeling of a driven cavity flow with two free parameters, Theor. Comput. Fluid Dyn., 16, 299-317 (2003) · Zbl 1090.76591
[20] Kalb, V.; Deane, A., An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models, Phys. fluids, 19, 5 (2007) · Zbl 1146.76431
[21] Le Dimet, F.-X.; Talagrand, O., Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus, 38A, 97-110 (1986)
[22] Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations (1971), Springer-Verlag · Zbl 0203.09001
[23] Ma, X.; Karniadakis, G. E.; Park, H.; Gharib, M., Dpiv-driven simulation: a new computational paradigm, Proc. R. Soc. Lond. A, 459, 547-565 (2002) · Zbl 1116.76413
[24] Margolin, L.; Titi, E.; Wynne, S., The postprocessing Galerkin and nonlinear Galerkin methods: a truncation analysis point of view, SIAM J. Numer. Anal., 41, 2, 695-714 (2003) · Zbl 1130.65314
[25] Marion, M.; Temam, R., Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 5, 1139-1157 (1989) · Zbl 0683.65083
[26] Métais, O.; Lesieur, M., Spectral large-eddy simulation of isotropic and stably stratified turbulence, J. Fluid Mech., 239, 157-194 (1992) · Zbl 0825.76272
[27] Noack, B.; Afanasiev, K.; Morzynski, M.; Tadmor, G.; Thiele, F., A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497, 335-363 (2003) · Zbl 1067.76033
[28] Noack, B.; Papas, P.; Monkevitz, P. A., The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows, J. Fluid Mech., 523, 339-365 (2005) · Zbl 1065.76102
[29] Nocedal, J.; Wright, S. J., Numerical Optimization. Springer Series in Operations Research (1999), Sringer-Verlag: Sringer-Verlag New-York
[30] Parnaudeau, P.; Carlier, J.; Heitz, D.; Lamballais, E., Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900, Phys. Fluids, 20, 8, 085101 (2008) · Zbl 1182.76591
[31] Perret, L.; Collin, E.; Delville, J., Polynomial identification of POD based low-order dynamical system, J. Turbul., 7, 17, 1-15 (2006) · Zbl 1273.76134
[32] Podvin, B.; Lumley, J., A low-dimensional approach for the minimal flow unit, J. Fluid Mech., 362, 121-151 (1998) · Zbl 0924.76084
[33] Rempfer, D., Investigation of boundary layer transition via Galerkin projection on empirical eigenfunctions, Phys. Fluids, 8, 1, 175-188 (1996) · Zbl 1023.76550
[34] Rempfer, D.; Fasel, H. F., Evolution of three-dimensional coherent structures in a flat-plate boundary layer, J. Fluid Mech., 260, 351-375 (1994)
[35] Shen, J., Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal., 38, 201-229 (1989) · Zbl 0684.65095
[36] Sirisup, S.; Karniadakis, G., A spectral viscosity method for correcting the long-term behavior of POD models, J. Comput. Phys., 194, 92-116 (2004) · Zbl 1136.76412
[37] Sirovich, L., Turbulence and the dynamics of coherent structures, Quarter. Appl. Math., 45, 561-590 (1987) · Zbl 0676.76047
[38] Stansby, P. K., The effects of end plates on the base pressure coefficient of a circular cylinder, R. Aeronaut. J., 78, 36-37 (1974)
[39] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (1990), Springer-Verlag · Zbl 0701.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.