×

Sensor placement in nuclear reactors based on the generalized empirical interpolation method. (English) Zbl 1392.82075

Summary: In this paper, we apply the so-called generalized empirical interpolation method (GEIM) to address the problem of sensor placement in nuclear reactors. This task is challenging due to the accumulation of a number of difficulties like the complexity of the underlying physics and the constraints in the admissible sensor locations and their number. As a result, the placement, still today, strongly relies on the know-how and experience of engineers from different areas of expertise. The present methodology contributes to making this process become more systematic and, in turn, simplify and accelerate the procedure.

MSC:

82D75 Nuclear reactor theory; neutron transport
65D05 Numerical interpolation
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified reduced basis methods for parametrized partial differential equations, SpringerBriefs in Mathematics, (2015)
[2] Benner, P.; Cohen, A.; Ohlberger, M.; Willcox, K., Model reduction and approximation: theory and algorithms, vol. 15, (2017), SIAM
[3] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339, 9, 667-672, (2004) · Zbl 1061.65118
[4] Maday, Y.; Mula, O., A generalized empirical interpolation method: application of reduced basis techniques to data assimilation, (Brezzi, Franco; Colli Franzone, Piero; Gianazza, Ugo; Gilardi, Gianni, Analysis and Numerics of Partial Differential Equations, Springer INdAM Series, vol. 4, (2013), Springer Milan), 221-235 · Zbl 1267.62013
[5] Maday, Y.; Mula, O.; Patera, A. T.; Yano, M., The generalized empirical interpolation method: stability theory on Hilbert spaces with an application to the Stokes equation, Comput. Methods Appl. Mech. Eng., 287, 310-334, (2015) · Zbl 1423.76346
[6] Maday, Y.; Patera, A. T.; Penn, J. D.; Yano, M., A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics, Int. J. Numer. Methods Eng., 102, 5, 933-965, (2015) · Zbl 1352.65529
[7] Peherstorfer, B.; Willcox, K., Dynamic data-driven reduced-order models, Comput. Methods Appl. Mech. Eng., 291, 21-41, (2015) · Zbl 1425.65205
[8] Binev, P.; Cohen, A.; Dahmen, W.; DeVore, R.; Petrova, G.; Wojtaszczyk, P., Data assimilation in reduced modeling, SIAM/ASA J. Uncertain. Quantificat., 5, 1, 1-29, (2017) · Zbl 06736493
[9] DeVore, R.; Petrova, G.; Wojtaszczyk, P., Data assimilation in Banach spaces, (2016), preprint
[10] Maday, Y.; Mula, O.; Turinici, G., Convergence analysis of the generalized empirical interpolation method, SIAM J. Numer. Anal., 54, 3, 1713-1731, (2016) · Zbl 1347.41044
[11] P. Binev, A. Cohen, O. Mula, J. Nichols, Greedy algorithms for optimal measurements selection in state estimation using reduced models, preprint, November 2017.; P. Binev, A. Cohen, O. Mula, J. Nichols, Greedy algorithms for optimal measurements selection in state estimation using reduced models, preprint, November 2017. · Zbl 1407.65256
[12] Gong, H.; Argaud, J.-P.; Bouriquet, B.; Maday, Y., The empirical interpolation method applied to the neutron diffusion equations with parameter dependence, (Proceedings of PHYSOR, (2016))
[13] Kolmogoroff, A., Über die beste annäherung von funktionen einer gegebenen funktionenklasse, Ann. Math., 37, 107-110, (1936) · JFM 62.0283.02
[14] Maday, Y.; Patera, A. T.; Turinici, G., A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations, J. Sci. Comput., 17, 1-4, 437-446, (2002) · Zbl 1014.65115
[15] Cohen, A.; DeVore, R., Kolmogorov widths under holomorphic mappings, IMA J. Numer. Anal., 36, 1, 1-12, (2015) · Zbl 1336.41010
[16] Cohen, A.; DeVore, R., Approximation of high-dimensional parametric pdes, Acta Numer., 24, 1-159, (2015) · Zbl 1320.65016
[17] Maday, Y.; Stamm, B., Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces, SIAM J. Sci. Comput., 35, 6, A2417-A2441, (2013) · Zbl 1285.65009
[18] Hebert, A., Applied reactor physics, (2009), Presses inter Polytechnique
[19] Dautray, R.; Lions, J.-L., Mathematical analysis and numerical methods for science and technology, vol. 6: evolution problems II, (2012), Springer Science & Business Media
[20] Pearson, K., On lines and planes of closest fit to systems of points in space, Philos. Mag., 2, 559-572, (1901) · JFM 32.0246.07
[21] Quarteroni, A.; Rozza, G.; Manzoni, A., Certified reduced basis approximation for parametrized partial differential equations and applications, J. Math. Ind., 1, 1, 1-49, (2011) · Zbl 1273.65148
[22] Wols, F.; Lathouwers, D.; Uyttenhove, W., Transient analyses of accelerator driven systems using modal expansion techniques, (2010), Delft University of Technology, Master’s thesis
[23] Buchan, A. G.; Pain, C. C.; Fang, F.; Navon, I. M., A POD reduced-order model for eigenvalue problems with application to reactor physics, Int. J. Numer. Methods Eng., 95, 12, 1011-1032, (2013) · Zbl 1352.82018
[24] Buchan, A. G.; Calloo, A. A.; Goffin, M. G.; Dargaville, S.; Fang, F.; Pain, C.; Navon, I. M., A POD reduced order model for resolving angular direction in neutron/photon transport problems, J. Comput. Phys., 296, 138-157, (2015) · Zbl 1352.82030
[25] Heaney, C. E.; Buchan, A. G.; Pain, C. C.; Jewer, S., A reduced order model for criticality problems in reactor physics varying control rod settings, (Proceedings of the 24th UK Conference of the Association for Computational Mechanics in Engineering, (2016), Cardiff University Cardiff)
[26] S. Lorenzi, A. Cammi, L. Luzzi, Spatial neutronics modelling to evaluate the temperature reactivity feedbacks in a lead-cooled fast reactor, in: Proceedings of ICAPP 2015, Nice, France, May 3-6, 2015.; S. Lorenzi, A. Cammi, L. Luzzi, Spatial neutronics modelling to evaluate the temperature reactivity feedbacks in a lead-cooled fast reactor, in: Proceedings of ICAPP 2015, Nice, France, May 3-6, 2015.
[27] Sartori, A.; Baroli, D.; Cammi, A.; Chiesa, D.; Luzzi, L.; Ponciroli, R.; Previtali, E.; Ricotti, M. E.; Rozza, G.; Sisti, M., Comparison of a modal method and a proper orthogonal decomposition approach for multi-group time-dependent reactor spatial kinetics, Ann. Nucl. Energy, 71, 217-229, (2014)
[28] Sartori, A., Reduced order methods: applications to nuclear reactor core spatial dynamics, (2015), PhD thesis, Italy
[29] Sartori, A.; Cammi, A.; Luzzi, L.; Ricotti, M. E.; Rozza, G., Reduced order methods: applications to nuclear reactor core spatial dynamics, (ICAPP 2015, (2015), Omnipress), 3318-3327
[30] Cammi, A.; Luzzi, L.; Rozza, G., A reduced basis approach for modeling the movement of nuclear reactor control rods, J. Nucl. Eng. Rad. Sci., 2, (2016)
[31] Gloria, A.; Goudon, T.; Krell, S., Numerical homogenization of a nonlinearly coupled elliptic-parabolic system, reduced basis method, and application to nuclear waste storage, Math. Models Methods Appl. Sci., 23, 13, 2523-2560, (2013) · Zbl 1330.35027
[32] Stacey, W. M., Nuclear reactor physics, (2001), John Wiley & Sons
[33] Benchmark problem book, (1977), Argonne National Laboratory, ANL-7416, Suppl. 2
[34] PARCS, IAEA 3D PWR problem
[35] Theler, G.; Bonetto, F. J.; Clausse, A., Solution of the 2D IAEA PWR benchmark with the neutronic code milonga, (Actas de la Reunión Anual de la Asociación Argentina de Tecnología Nuclear, vol. XXXVIII, (2011))
[36] Bouriquet, B.; Argaud, J.-P.; Erhard, P.; Ponçot, A., Nuclear core activity reconstruction using heterogeneous instruments with data assimilation, EPJ Nucl. Sci. Technol., 1, 18, (2015)
[37] Clerc, T.; Hébert, A.; Leroyer, H.; Argaud, J.-P.; Bouriquet, B.; Ponçot, A., An advanced computational scheme for the optimization of 2D radial reflector calculations in pressurized water reactors, Nucl. Eng. Des., 273, 560-575, (2014)
[38] Calloo, A.; Couyras, D.; Fécotte, F.; Guillo, M., Cocagne: EDF new neutronic core code for ANDROMEDE calculation chain, (Proceedings of International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C), Jeju, Korea, (2017))
[39] Bouriquet, B.; Argaud, J.-P.; Erhard, P.; Massart, S.; Ponçot, A.; Ricci, S.; Thual, O., Robustness of nuclear core activity reconstruction by data assimilation, J. Power Energy Syst., 6, 2, 289-301, (2012)
[40] Maday, Y.; Patera, A. T.; Penn, J. D.; Yano, M., PBDW state estimation: noisy observations; configuration-adaptive background spaces, physical interpretations, ESAIM Proc. Surv., 50, 144-168, (2015) · Zbl 1342.82116
[41] Argaud, J.-P.; Bouriquet, B.; Gong, H.; Maday, Y.; Mula, O., Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics, (Bittencourt, Marco L.; Dumont, Ney A.; Hesthaven, Jan S., Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016: Selected Papers from the ICOSAHOM Conference, June 27-July 1, 2016, Rio de Janeiro, Brazil, (2017), Springer International Publishing), 133-145 · Zbl 1383.82078
[42] Taddei, T., An adaptive parametrized-background data-weak approach to variational data assimilation, ESAIM Math. Model. Numer. Anal., 51, 5, 1827-1858, (2017) · Zbl 1392.62125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.