×

Reduced order borehole induction modelling. (English) Zbl 07512419

Summary: This article presents a new reduced order model based on proper orthogonal decomposition (POD) for solving the electromagnetic equation for borehole modelling applications. The method aims to accurately and efficiently predict the electromagnetic fields generated by an array induction tool – an instrument that transmits and receives electrical signals along different positions within a borehole. The motivation for this approach is in the generation of an efficient ‘forward model’ (which provides solutions to the electromagnetic equation) for the purpose of improving the efficiency of inversion calculations (which typically require a large number of forward solutions) that are used to determine surrounding material properties. This article develops a reduced order model for this purpose as it can be significantly more efficient to compute than standard models, for example, those based on finite elements. It is shown here how the POD basis functions are generated from the snapshot solutions of a high resolution model, and how the discretised equations can be generated efficiently. The novelty is that this is the first time such a POD model reduction approach has been developed for this application, it is also unique in its use of separate POD basis functions for the real and complex solution fields. A numerical example for predicting the electromagnetic field is used to demonstrate the accuracy of the POD method for use as a forward model. It is shown that the method retains accuracy whilst reducing the costs of the computation by several orders of magnitude in comparison to an established method.

MSC:

78-XX Optics, electromagnetic theory
65-XX Numerical analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, B. I., PhD thesis, Modeling and Inversion Methods for the Interpretation of Resistivity Logging Tool Response. (2001), Technische Universiteit Delft
[2] Anderson, B.; Gianzero, S., Induction Sonde Response in Stratified Media, The Log Analyst, 24, 1, 25-31 (1983)
[3] Ardjmandpour, N., Modelling and Inversion of Array Induction Tool, PhD thesis (2010), Imperial College London
[4] Aubry, N.; Holmes, P.; Lumley, J. L., The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer, Journal of Fluid Dynamics, 192, 115-173 (1988) · Zbl 0643.76066
[5] Banks, H. T.; Joyner, M. L.; Wincheski, B.; Winfree, W. P., Nondestructive Evaluation Using a Reduced-Order Computational Methodology, Inverse Problems, 16, 4, 929-945 (2000) · Zbl 0960.35107
[6] Barber, T. D.; Broussard, T.; Minerbo, G. N.; Murgatroyd, D.; Sijercic, Z., Interpretation of Multiarray Induction Logs in Invaded Formations at High Relative Dip Angles, 40, 3, 220-217 (1999)
[7] Barber, T. D.; Rosthal, R. A., Using a Multiarray Induction Tool to Achieve High-Resolution Logs with Minimum Environmental Effects (1991)
[8] Cao, Y.; Zhu, J.; Navon, I. M.; Luo, Z., A Reduced-Order Approach to Four-Dimensional Variational Data Assimilation Using Proper Orthogonal Decomposition, International Journal for Numerical Methods in Fluids, 53, 10, 1571-1583 (2007) · Zbl 1370.86002
[9] Carlberg, K.; Farhat, C.; Cortial, J.; Amsallem, D., The {GNAT} Method for Nonlinear Model Reduction: Effective Implementation and Application to Computational Fluid Dynamics and Turbulent Flows, Journal of Computational Physics, 242, 623-647 (2013) · Zbl 1299.76180
[10] Chaturantabut, S.; Sorensen, D., Nonlinear Model Reduction via Discrete Empirical Interpolation, SIAM Journal on Scientific Computing, 32, 2737-2764 (2010) · Zbl 1217.65169
[11] Chen, X.; Navon, I. M.; Fang, F., A Dual-Weighted Trust-Region Adaptive POD 4D-VAR Applied to a Finite-Element Shallow Water Equations Model, International Journal for Numerical Methods in Fluids, 65, 5, 520-541 (2011) · Zbl 1428.76145
[12] Crommelin, D. T.; Majda, A. J., Strategies for Model Reduction: Comparing Different Optimal Bases, Journal of the Atmospheric Sciences, 61, 17, 2206-2217 (2004)
[13] Daescu, D. N.; Navon, I. M., A Dual-Weighted Approach to Order Reduction in 4DVAR Data Assimilation, Monthly Weather Review, 136, 3, 1026-1041 (2008)
[14] Doll, H. G., Introduction to Induction Logging and Application to Logging of Wells Drilled with Oil Base Mud, Journal of Petroleum Technology, 1, 148-162 (1949)
[15] Dyos, C. J., Inversion of Induction Log Data by the Method of Maximum Entropy, (1987)
[16] Ellis, D. V.; Singer, J. M., Well Logging for Earth Scientists (2007), Dordrecht: Springer, Dordrecht
[17] Fang, F.; Pain, C. C.; Navon, I. M.; Gorman, G. J.; Piggott, M. D.; Allison, P. A., The Independent Set Perturbation Adjoint Method: A New Method of Differentiating Mesh-Based Fluids Models, International Journal for Numerical Methods in Fluids, 66, 8, 976-999 (2011) · Zbl 1285.76015
[18] Fang, F.; Pain, C. C.; Navon, I. M.; Piggott, M. D.; Gorman, G. J.; Allison, P. A.; Goddard, A. J. H., Reduced Order Modelling of an Adaptive Mesh Ocean Model, International Journal for Numerical Methods in Fluids, 59, 827-851 (2009) · Zbl 1155.86004
[19] Freedman, R.; Minerbo, G. N., Maximum Entropy Inversion of Induction-Log Data, SPE Formation Evaluation, 6, 259-268 (1991)
[20] Fukunaga, K., Introduction to Statistical Pattern Recognition. Computer Science and Scientific Computing Series (1990), Boston, MA: Academic Press, Boston, MA · Zbl 0711.62052
[21] Grove, G. P.; Minerbo, G. N., An Adaptive Borehole Correction Scheme for Array Induction Tools, 1-25 (1991)
[22] Gunzburger, M. D., Perspectives in Flow Control and Optimization (2003), SIAM: SIAM, Philadelphia, USA · Zbl 1088.93001
[23] Hardman, R. H.; Shen, L. C., Charts for Correcting the Effect of Formation Dip and Hole Deviation on Induction Logs, The Log Analyst, 28, 4, 349-356 (1987)
[24] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 192 (1998), Cambridge: Cambridge University Press, Cambridge · Zbl 0923.76002
[25] Hopcroftand, P. O.; Gallagher, K.; Pain, C. C.; Fang, F., Three-Dimensional Simulation and Inversion of Borehole Temperatures for Reconstructing Past Climate in Complex Settings, Journal of Geophysical Research, 114, 1-16 (2009)
[26] Hoteit, I.; Köhl, A., Efficiency of Reduced-Order, Time-Dependent Adjoint Data Assimilation Approaches, Journal of Oceanography, 62, 4, 539-550 (2006)
[27] Howard, A. Q., A New Invasion Model for Resistivity Log Interpretation, Log Analyst, 33, 2, 96-110 (1992)
[28] Jolliffe, I. T., Principal Component Analysis (2002), Dordrecht: Springer, Dordrecht · Zbl 1011.62064
[29] Karhunen, K., Zur Spektraltheorie stochastischer Prozesse, Annales Academiae Scientiarum Fennicae Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys., 37, 1-79 (1946) · Zbl 0030.20103
[30] Kirby, M.; Sirovich, L., Application of the Karhunen-Loève Procedure for the Characterization of Human Faces, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 103-108 (1990)
[31] Kosambi, D. D., Statistics in Function Space, Journal of the Indian Mathematical Society, 7, 76-88 (1943) · Zbl 0063.03317
[32] Kunisch, K.; Volkwein, S., Optimal Snapshot Location for Computing Pod Basis Functions, ESAIM: Mathematical Modelling and Numerical Analysis, 44, 509-529 (2010) · Zbl 1193.65113
[33] Liao, C.-M.; Balachandran, B.; Karkoub, M.; Abdel-Magid, Y. L., Drill-String Dynamics: Reduced-Order Models and Experimental Studies, ASME Journal of Vibration and Acoustics, 133, 4, 041008-1-041008-8 (2011)
[34] Lin, Y.-Y.; Gianzera, S.; Strickland, R., Inversion of Induction Logging Data Using the Least Squares Technique (1984)
[35] Loève, M., Sur les fonctions aleatoires stationaires du second ordre, Revue Scientifique, 83, 297-303 (1945) · Zbl 0063.03610
[36] Lumley, J. L., The structure of inhomogeneous turbulent flows, Atmospheric Turbulence and Radio Propagation, 166-178 (1967), Nauka: Nauka, Moscow
[37] Luo, Z.; Chen, J.; Zhu, J.; Wang, R.; Navon, I. M., An Optimizing Reduced Order FDS for the Tropical Pacific Ocean Reduced Gravity Model, International Journal for Numerical Methods in Fluids, 55, 2, 143-161 (2007) · Zbl 1205.86007
[38] Luo, Z.; Zhu, J.; Wang, R.; Navon, I. M., Proper Orthogonal Decomposition Approach and Error Estimation of Mixed Finite Element Methods for the Tropical Pacific Ocean Reduced Gravity Model, Computer Methods in Applied Mechanics and Engineering, 196, 41-44, 4184-4195 (2007) · Zbl 1173.76348
[39] Majda, A. J.; Timofeyev, I.; Vanden-Eijnden, E., Systematic Strategies for Stochastic Mode Reduction in Climate, Journal of the Atmospheric Sciences, 60, 14, 1705-1722 (2003)
[40] Moran, J. H., Induction Logging-Geometrical Factors with Skin Effect, The Log Analyst, 23, 6, 4-10 (1982)
[41] Pearson, K., On Lines and Planes of Closest Fit to Systems of Points in Space, Philosophical Magazine, 2, 6, 559-572 (1901) · JFM 32.0710.04
[42] Razvan, Stefanescu; Navon, I. M., POD/DEIM Nonlinear model” order reduction of an ADI implicit shallow water equations model, Journal of Computational Physics, 237, 95-114 (2005) · Zbl 1286.76106
[43] Robert, C.; Durbiano, S.; Blayo, E.; Verron, J.; Blum, J.; Dimet, F.-X. L., A Reduced-Order Strategy for 4d-Var Data Assimilation, Journal of Marine Systems, 57, 1-2, 70-82 (2005)
[44] Rust, D.; Anderson, B., “An intimate look at induction logging”, The Technical Review, 23, 2, 30-54 (1975)
[45] Sirovich, L., Turbulence and the Dynamics of Coherent Structures, Part III: Dynamics and Scaling, Quarterly of Applied Mathematics, XLV, 583-590 (1987) · Zbl 0676.76047
[46] Thadani, S. G.; Merchant, G. A.; Verbout, J. L., Deconvolution with Variable Frequency Induction Logging Systems (1983)
[47] Vauhkonen, M.; Kaipio, J. P.; Somersalo, E.; Karjalainen, P. A., Electrical Impedance Tomography with Basis Constraints, Inverse Problems, 13, 2, 523-530 (1997) · Zbl 0872.35130
[48] Willcox, K.; Peraire, J., Balanced Model Reduction via the Proper Orthogonal Decomposition, AIAA Journal, 40, 2323-2330 (2002)
[49] Xiao, D.; Fang, F.; Buchan, A.; Pain, C.; Navon, I.; Du, J.; Hu, G., Non-linear Model Reduction for the Navier—Stokes Equations Using Residual {DEIM} Method, Journal of Computational Physics, 263, 1-18 (2014) · Zbl 1349.76288
[50] Xiao, J.; Geldmacher, I.; Rabinovich, M., Deviated-Well Software Focusing of Multiarray Induction Measurements (2000)
[51] Xu, H., A Catalogue of Three-Level Regular Fractional Factorial Designs, Metrika, 62, 2, 259-281 (2005) · Zbl 1078.62084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.