×

An artificial neural network framework for reduced order modeling of transient flows. (English) Zbl 1479.76082

Summary: This paper proposes a supervised machine learning framework for the non-intrusive model order reduction of unsteady fluid flows to provide accurate predictions of non-stationary state variables when the control parameter values vary. Our approach utilizes a training process from full-order scale direct numerical simulation data projected on proper orthogonal decomposition (POD) modes to achieve an artificial neural network (ANN) model with reduced memory requirements. This data-driven ANN framework allows for a nonlinear time evolution of the modal coefficients without performing a Galerkin projection. Our POD-ANN framework can thus be considered an equation-free approach for latent space dynamics evolution of nonlinear transient systems and can be applied to a wide range of physical and engineering applications. Within this framework we introduce two architectures, namely sequential network (SN) and residual network (RN), to train the trajectory of modal coefficients. We perform a systematic analysis of the performance of the proposed reduced order modeling approaches on prediction of a nonlinear wave-propagation problem governed by the viscous Burgers equation, a simplified prototype setting for transient flows. We find that the POD-ANN-RN yields stable and accurate results for test problems assessed both within inside and outside of the database range and performs significantly better than the standard intrusive Galerkin projection model. Our results show that the proposed framework provides a non-intrusive alternative to the evolution of transient physics in a POD basis spanned space, and can be used as a robust predictive model order reduction tool for nonlinear dynamical systems.

MSC:

76M99 Basic methods in fluid mechanics
76D33 Waves for incompressible viscous fluids
68T05 Learning and adaptive systems in artificial intelligence
92B20 Neural networks for/in biological studies, artificial life and related topics

Software:

torchdiffeq
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ahmed, M.; San, O., Stabilized principal interval decomposition method for model reduction of nonlinear convective systems with moving shocks, Comput Appl Math, 37, 5, 6870-6902 (2018) · Zbl 1413.37055
[2] Akhtar, I.; Borggaard, J.; Burns, J. A.; Imtiaz, H.; Zietsman, L., Using functional gains for effective sensor location in flow control: a reduced-order modelling approach, J Fluid Mech, 781, 622-656 (2015) · Zbl 1359.76110
[3] Amsallem, D.; Farhat, C., Stabilization of projection-based reduced-order models, Int J Numer Methods Eng, 91, 4, 358-377 (2012) · Zbl 1253.90184
[4] Aubry, N.; Holmes, P.; Lumley, J. L.; Stone, E., The dynamics of coherent structures in the wall region of a turbulent boundary layer, J Fluid Mech, 192, 1, 115-173 (1988) · Zbl 0643.76066
[5] Audouze, C.; De Vuyst, F.; Nair, P. B., Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations, Numer Methods Partial DifferEquations, 29, 5, 1587-1628 (2013) · Zbl 1274.65270
[6] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev, 57, 4, 483-531 (2015) · Zbl 1339.37089
[7] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Ann Rev Fluid Mech, 25, 1, 539-575 (1993)
[8] Bistrian, D.; Navon, I., An improved algorithm for the shallow water equations model reduction: dynamic mode decomposition vs POD, Int J Numer Methods Fluids, 78, 9, 552-580 (2015)
[9] Bistrian, D. A.; Navon, I. M., Randomized dynamic mode decomposition for nonintrusive reduced order modelling, Int J Numer Methods Eng, 112, 1, 3-25 (2017)
[10] Borggaard, J.; Hay, A.; Pelletier, D., Interval-based reduced order models for unsteady fluid flow, Int J Numer AnalModel., 4, 3-4, 353-367 (2007) · Zbl 1133.37342
[11] Borggaard, J.; Iliescu, T.; Wang, Z., Artificial viscosity proper orthogonal decomposition, Math Comput Modell, 53, 1-2, 269-279 (2011) · Zbl 1211.76077
[12] Bright, I.; Lin, G.; Kutz, J. N., Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements, Phys Fluids, 25, 12, 127102 (2013) · Zbl 1320.76003
[13] Brunton, S. L.; Noack, B. R., Closed-loop turbulence control: progress and challenges, Appl Mech Rev, 67, 5, 050801 (2015)
[14] Buffoni, M.; Camarri, S.; Iollo, A.; Salvetti, M. V., Low-dimensional modelling of a confined three-dimensional wake flow, J Fluid Mech, 569, 141-150 (2006) · Zbl 1104.76071
[15] Bui-Thanh, T.; Willcox, K.; Ghattas, O.; van Bloemen Waanders, B., Goal-oriented, model-constrained optimization for reduction of large-scale systems, J Comput Phys, 224, 2, 880-896 (2007) · Zbl 1123.65081
[16] Carlberg, K.; Farhat, C., A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems, Int J Numer Methods Eng, 86, 3, 381-402 (2011) · Zbl 1235.74352
[17] Carpenter, M. H.; Gottlieb, D.; Abarbanel, S., Stable and accurate boundary treatments for compact, high-order finite-difference schemes, Appl Numer Math, 12, 1, 55-87 (1993) · Zbl 0778.65057
[18] Chen, T. Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. K., Neural ordinary differential equations, Advances in neural information processing systems, 6571-6583 (2018)
[19] Chen, W.; Hesthaven, J. S.; Junqiang, B.; Qiu, Y.; Yang, Z.; Tihao, Y., Greedy nonintrusive reduced order model for fluid dynamics, AIAA J, 56, 12, 4927-4943 (2018)
[20] Cizmas, P. G.; Richardson, B. R.; Brenner, T. A.; OBrien, T. J.; Breault, R. W., Acceleration techniques for reduced-order models based on proper orthogonal decomposition, J Comput Phys, 227, 16, 7791-7812 (2008) · Zbl 1267.76081
[21] Cordier, L.; Noack, B. R.; Tissot, G.; Lehnasch, G.; Delville, J.; Balajewicz, M., Identification strategies for model-based control, Exp Fluids, 54, 8, 1580 (2013)
[22] Dawson, C. W.; Wilby, R., An artificial neural network approach to rainfall-runoff modelling, Hydrol Sci J, 43, 1, 47-66 (1998)
[23] Demuth, H. B.; Beale, M. H.; De Jess, O.; Hagan, M. T., Neural network design (2014), Martin Hagan, OK, USA
[24] Dyke, S.; Spencer Jr, B.; Sain, M.; Carlson, J., Modeling and control of magnetorheological dampers for seismic response reduction, Smart Mater Struct, 5, 5, 565 (1996)
[25] Eberhart, R.; Kennedy, J., A new optimizer using particle swarm theory, Proceedings of the sixth international symposium on micro machine and human science, 39-43 (1995), IEEE
[26] Efe, M.; Debiasi, M.; Yan, P.; Ozbay, H.; Samimy, M., Control of subsonic cavity flows by neural networks-analytical models and experimental validation, 43rd AIAA aerospace sciences meeting and exhibit, 294 (2005)
[27] Efe, M. O.; Debiasi, M.; Ozbay, H.; Samimy, M., Modeling of subsonic cavity flows by neural networks, Proceedings of the IEEE international conference on mechatronics, 560-565 (2004), IEEE
[28] El Majd, B. A.; Cordier, L., New regularization method for calibrated POD reduced-order models, Math Modell Anal, 21, 1, 47-62 (2016)
[29] Faller, W. E.; Schreck, S. J., Unsteady fluid mechanics applications of neural networks, J Aircr, 34, 1, 48-55 (1997)
[30] Fang, F.; Pain, C.; Navon, I.; Gorman, G.; Piggott, M.; Allison, P., A POD reduced order unstructured mesh ocean modelling method for moderate Reynolds number flows, Ocean Modell, 28, 1, 127-136 (2009)
[31] Fortuna, L.; Nunnari, G.; Gallo, A., Model order reduction techniques with applications in electrical engineering (2012), Springer Science & Business Media
[32] Freund, R. W., Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation, Applied and computational control, signals, and circuits, 435-498 (1999), Springer · Zbl 0967.93008
[33] Gamahara, M.; Hattori, Y., Searching for turbulence models by artificial neural network, Phys Rev Fluids, 2, 5, 054604 (2017)
[34] Gautier, N.; Aider, J.-L.; Duriez, T.; Noack, B.; Segond, M.; Abel, M., Closed-loop separation control using machine learning, J Fluid Mech, 770, 442-457 (2015)
[35] Gençay, R.; Qi, M., Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging, IEEE Trans Neural Netw, 12, 4, 726-734 (2001)
[36] Gillies, E., Low-dimensional characterization and control of non-linear wake flows (1995), PhD. Dissertation, University of Glasgow, Scotland
[37] Gillies, E., Low-dimensional control of the circular cylinder wake, J Fluid Mech, 371, 157-178 (1998) · Zbl 0935.76024
[38] Gillies, E., Multiple sensor control of vortex shedding, AIAA J, 39, 4, 748-750 (2001)
[39] Gottlieb, S.; Shu, C. W., Total variation diminishing Runge-Kutta schemes, Math Comput, 67, 221, 73-85 (1998) · Zbl 0897.65058
[40] Gunzburger, M. D., Flow control (2012), Springer, Berlin
[41] Haber, E.; Ruthotto, L., Stable architectures for deep neural networks, Inverse Prob, 34, 1, 014004 (2017) · Zbl 1426.68236
[42] Hampton, J.; Fairbanks, H. R.; Narayan, A.; Doostan, A., Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction, J Comput Phys, 368, 315-332 (2018) · Zbl 1392.62352
[43] Haykin, S., Neural networks and learning machines (2009), Pearson Education, Inc.: Pearson Education, Inc. Upper Saddle River, NJ, USA
[44] He, K.; Zhang, X.; Ren, S.; Sun, J., Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, 770-778 (2016)
[45] Hesthaven, J. S.; Ubbiali, S., Non-intrusive reduced order modeling of nonlinear problems using neural networks, J Comput Phys, 363, 55-78 (2018) · Zbl 1398.65330
[46] Hocevar, M.; Sirok, B.; Grabec, I., Experimental turbulent field modeling by visualization and neural networks, J Fluids Eng, 126, 316-322 (2004)
[47] Hoffman, J. D.; Frankel, S., Numerical methods for engineers and scientists (2001), CRC Press, NY, USA · Zbl 1068.65001
[48] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, coherent structures, dynamical systems and symmetry (1998), Cambridge University Press, NY, USA · Zbl 0923.76002
[49] Hotelling, H., Analysis of a complex of statistical variables into principal components, J Educ Psychol, 24, 6, 417-441 (1933)
[50] Iollo, A.; Lanteri, S.; Désidéri, J.-A., Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations, Theor Comput Fluid Dyn, 13, 6, 377-396 (2000) · Zbl 0987.76077
[51] Kani J.N., Elsheikh A.H. DR-RNN: A deep residual recurrent neural network for model reduction. arXiv:170900939v1; Kani J.N., Elsheikh A.H. DR-RNN: A deep residual recurrent neural network for model reduction. arXiv:170900939v1
[52] Kerschen, G.; Golinval, J.-c.; Vakakis, A. F.; Bergman, L. A., The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview, Nonlinear Dyn, 41, 1-3, 147-169 (2005) · Zbl 1103.70011
[53] Khibnik, A.; Narayanan, S.; Jacobson, C.; Lust, K., Analysis of low dimensional dynamics of flow separation, Continuation methods in fluid dynamics, 74, 167-178 (2000), Vieweg · Zbl 1138.76370
[54] Kim, T.-W.; Valdés, J. B., Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks, J Hydrol Eng, 8, 6, 319-328 (2003)
[55] Kramer, B.; Grover, P.; Boufounos, P.; Nabi, S.; Benosman, M., Sparse sensing and DMD-based identification of flow regimes and bifurcations in complex flows, SIAM J Appl Dyn Syst, 16, 2, 1164-1196 (2017) · Zbl 1373.37185
[56] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J Numer Anal, 40, 2, 492-515 (2002) · Zbl 1075.65118
[57] Kunisch, K.; Volkwein, S., Optimal snapshot location for computing POD basis functions, ESAIM Math Modell NumerAnal, 44, 3, 509-529 (2010) · Zbl 1193.65113
[58] Lee, C.; Kim, J.; Babcock, D.; Goodman, R., Application of neural networks to turbulence control for drag reduction, Phys Fluids, 9, 6, 1740-1747 (1997)
[59] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J Comput Phys, 103, 1, 16-42 (1992) · Zbl 0759.65006
[60] Levenberg, K., A method for the solution of certain non-linear problems in least squares, Q Appl Math, 2, 2, 164-168 (1944) · Zbl 0063.03501
[61] Lin, Z.; Xiao, D.; Fang, F.; Pain, C.; Navon, I. M., Non-intrusive reduced order modelling with least squares fitting on a sparse grid, Int J Numer Methods Fluids, 83, 3, 291-306 (2017)
[62] Ling, J.; Jones, R.; Templeton, J., Machine learning strategies for systems with invariance properties, J Comput Phys, 318, 22-35 (2016) · Zbl 1349.76124
[63] Ling, J.; Kurzawski, A.; Templeton, J., Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J Fluid Mech, 807, 155-166 (2016) · Zbl 1383.76175
[64] Ling, J.; Templeton, J., Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty, Phys Fluids, 27, 8, 085103 (2015)
[65] Loève, M., Probability theory; foundations, random sequences (1955), New York: D. Van Nostrand Company, NY, USA · Zbl 0066.10903
[66] Lorenz E.N. Empirical orthogonal functions and statistical weather prediction1956;.; Lorenz E.N. Empirical orthogonal functions and statistical weather prediction1956;.
[67] Lu Y., Zhong A., Li Q., Dong B. Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. arXiv:171010121v1; Lu Y., Zhong A., Li Q., Dong B. Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. arXiv:171010121v1
[68] Lucia, D. J.; Beran, P. S.; Silva, W. A., Reduced-order modeling: new approaches for computational physics, Prog Aerosp Sci, 40, 1, 51-117 (2004)
[69] Lui H.F., Wolf W.R. Construction of reduced order models for fluid flows using deep feedforward neural networks. arXiv:190305206v1; Lui H.F., Wolf W.R. Construction of reduced order models for fluid flows using deep feedforward neural networks. arXiv:190305206v1
[70] Lumley, J., The structures of inhomogeneous turbulent flow, (Yaglom, A.; Tatarski, V., Atmospheric turbulence and radio wave propagation (1967)), 160-178
[71] Ly, H. V.; Tran, H. T., Modeling and control of physical processes using proper orthogonal decomposition, Math Comput Modell, 33, 1-3, 223-236 (2001) · Zbl 0966.93018
[72] Maleewong, M.; Sirisup, S., On-line and off-line POD assisted projective integral for non-linear problems: a case study with Burgers’ equation, Int J MathComput Phys Electr Comput Eng, 5, 7, 984-992 (2011)
[73] Maulik, R.; San, O., A neural network approach for the blind deconvolution of turbulent flows, J Fluid Mech, 831, 151-181 (2017)
[74] Mignolet, M. P.; Przekop, A.; Rizzi, S. A.; Spottswood, S. M., A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures, J Sound Vibr, 332, 10, 2437-2460 (2013)
[75] Milano, M.; Koumoutsakos, P., Neural network modeling for near wall turbulent flow, J Comput Phys, 182, 1, 1-26 (2002) · Zbl 1090.76535
[76] Mohan A.T., Gaitonde D.V. A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks. arXiv:180409269v1; Mohan A.T., Gaitonde D.V. A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks. arXiv:180409269v1
[77] Mohebujjaman, M.; Rebholz, L. G.; Xie, X.; Iliescu, T., Energy balance and mass conservation in reduced order models of fluid flows, J Comput Phys, 346, 262-277 (2017) · Zbl 1378.76050
[78] Moosavi A., Stefanescu R., Sandu A. Efficient construction of local parametric reduced order models using machine learning techniques. arXiv:151102909v1; Moosavi A., Stefanescu R., Sandu A. Efficient construction of local parametric reduced order models using machine learning techniques. arXiv:151102909v1 · Zbl 1433.65186
[79] Müller, S.; Milano, M.; Koumoutsakos, P., Application of machine learning algorithms to flow modeling and optimization, 169-178 (1999), Center for Turbulence Research Annual Research Briefs, Stanford University, Stanford, CA
[80] Narayanan, S.; Khibnik, A.; Jacobson, C.; Kevrekedis, Y.; Rico-Martinez, R.; Lust, K., Low-dimensional models for active control of flow separation, Proceedings of the 1999 IEEE international conference on control applications, 2, 1151-1156 (1999), IEEE
[81] Noack, B. R.; Morzynski, M.; Tadmor, G., Reduced-order modelling for flow control, 528 (2011), Springer Verlag, Berlin
[82] Östh, J.; Noack, B. R.; Krajnović, S.; Barros, D.; Borée, J., On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body, J Fluid Mech, 747, 518-544 (2014) · Zbl 1371.76085
[83] Peherstorfer, B.; Willcox, K., Data-driven operator inference for nonintrusive projection-based model reduction, Comput Methods Appl MechEng, 306, 196-215 (2016)
[84] Ravindran, S. S., A reduced-order approach for optimal control of fluids using proper orthogonal decomposition, Int J Numer Methods Fluids, 34, 5, 425-448 (2000) · Zbl 1005.76020
[85] Rhinehart, R. R.; Su, M.; Manimegalai-Sridhar, U., Leapfrogging and synoptic leapfrogging: a new optimization approach, Comput Chem Eng, 40, 67-81 (2012)
[86] Rowley, C. W.; Dawson, S. T., Model reduction for flow analysis and control, Annu Rev Fluid Mech, 49, 387-417 (2017) · Zbl 1359.76111
[87] Roychowdhury, J., Reduced-order modeling of time-varying systems, IEEE Trans Circuits Syst II, 46, 10, 1273-1288 (1999) · Zbl 0939.74510
[88] Sahan, R.; Koc-Sahan, N.; Albin, D.; Liakopoulos, A., Artificial neural network-based modeling and intelligent control of transitional flows, Proceedings of the 1997 IEEE international conference on control applications, 359-364 (1997), IEEE
[89] San, O.; Borggaard, J., Principal interval decomposition framework for POD reduced-order modeling of convective Boussinesq flows, Int J Numer Methods Fluids, 78, 1, 37-62 (2015)
[90] San, O.; Iliescu, T., Proper orthogonal decomposition closure models for fluid flows: Burgers equation, Int J Numer AnalModel, 5, 217-237 (2014) · Zbl 1463.65245
[91] San, O.; Iliescu, T., A stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation, Adv Comput Math, 41, 5, 1289-1319 (2015) · Zbl 1327.37028
[92] San, O.; Maulik, R., Extreme learning machine for reduced order modeling of turbulent geophysical flows, Phys Rev E, 97, 4, 042322 (2018)
[93] San, O.; Maulik, R., Machine learning closures for model order reduction of thermal fluids, Appl Math Modell, 60, 681-710 (2018)
[94] San, O.; Maulik, R., Neural network closures for nonlinear model order reduction, Adv Comput Math, 44, 1717-1750 (2018) · Zbl 1404.37101
[95] Silveira, L. M.; Kamon, M.; White, J., Efficient reduced-order modeling of frequency-dependent coupling inductances associated with 3-D interconnect structures, IEEE Trans Compon PackagManuf Technol Part B, 19, 2, 283-288 (1996)
[96] Singh, A. P.; Duraisamy, K., Using field inversion to quantify functional errors in turbulence closures, Phys Fluids, 28, 4, 045110 (2016)
[97] Sirovich, L., Turbulence and the dynamics of coherent structures. I-Coherent structures. II-Symmetries and transformations. III-Dynamics and scaling, Q Appl Math, 45, 561-571 (1987) · Zbl 0676.76047
[98] Storn, R.; Price, K., Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J Global Optim, 11, 4, 341-359 (1997) · Zbl 0888.90135
[99] Taira, K.; Brunton, S. L.; Dawson, S. T.; Rowley, C. W.; Colonius, T.; McKeon, B. J., Modal analysis of fluid flows: an overview, AIAA J, 55, 4013-4041 (2017)
[100] Tallet, A.; Allery, C.; Leblond, C., Optimal flow control using a POD-based reduced-order model, Numer Heat Transfer Part B, 70, 1, 1-24 (2016)
[101] Tracey, B.; Duraisamy, K.; Alonso, J., Application of supervised learning to quantify uncertainties in turbulence and combustion modeling, 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 259 (2013)
[102] Wan, Z. Y.; Vlachas, P.; Koumoutsakos, P.; Sapsis, T., Data-assisted reduced-order modeling of extreme events in complex dynamical systems, PloS One, 13, 5, e0197704 (2018)
[103] Wang, C.; Liu, J.-G., Analysis of finite difference schemes for unsteady Navier-Stokes equations in vorticity formulation, Numerische Mathematik, 91, 3, 543-576 (2002) · Zbl 1022.76039
[104] Wang, Q.; Hesthaven, J. S.; Ray, D., Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem, J Comput Phys, 384, 289-307 (2019)
[105] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Two-level discretizations of nonlinear closure models for proper orthogonal decomposition, J Comput Phys, 230, 1, 126-146 (2011) · Zbl 1427.76226
[106] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Comput Methods Appl MechEng, 237, 10-26 (2012) · Zbl 1253.76050
[107] Wang, Z.; Xiao, D.; Fang, F.; Govindan, R.; Pain, C. C.; Guo, Y., Model identification of reduced order fluid dynamics systems using deep learning, Int J Numer Methods Fluids, 86, 4, 255-268 (2018)
[108] Weller, J.; Lombardi, E.; Bergmann, M.; Iollo, A., Numerical methods for low-order modeling of fluid flows based on POD, Int J Numer Methods Fluids, 63, 2, 249-268 (2010) · Zbl 1423.76356
[109] Wells, D.; Wang, Z.; Xie, X.; Iliescu, T., An evolve-then-filter regularized reduced order model for convection-dominated flows, Int J Numer Methods Fluids, 84, 10, 598-615 (2017)
[110] Widrow, B.; Rumelhart, D. E.; Lehr, M. A., Neural networks: applications in industry, business and science, Commun ACM, 37, 3, 93-106 (1994)
[111] Xiao, D.; Fang, F.; Buchan, A.; Pain, C.; Navon, I.; Muggeridge, A., Non-intrusive reduced order modelling of the Navier-Stokes equations, Comput Methods Appl MechEng, 293, 522-541 (2015) · Zbl 1423.76287
[112] Xiao, D.; Fang, F.; Pain, C.; Hu, G., Non-intrusive reduced-order modelling of the Navier-Stokes equations based on RBF interpolation, Int J Numer Methods Fluids, 79, 11, 580-595 (2015)
[113] Xiao, D.; Fang, F.; Pain, C.; Hu, G., Non-intrusive reduced-order modelling of the Navier-Stokes equations based on RBF interpolation, Int J Numer Methods Fluids, 79, 11, 580-595 (2015)
[114] Xiao, D.; Heaney, C.; Fang, F.; Mottet, L.; Hu, R.; Bistrian, D., A domain decomposition non-intrusive reduced order model for turbulent flows, Comput Fluids, 182, 15-27 (2019) · Zbl 1411.76072
[115] Xie, X.; Mohebujjaman, M.; Rebholz, L.; Iliescu, T., Data-driven filtered reduced order modeling of fluid flows, SIAM J Sci Comput, 40, 3, B834-B857 (2018) · Zbl 1412.65158
[116] Xie, X.; Wells, D.; Wang, Z.; Iliescu, T., Approximate deconvolution reduced order modeling, Comput Methods Appl MechEng, 313, 512-534 (2017)
[117] Xie, X.; Wells, D.; Wang, Z.; Iliescu, T., Numerical analysis of the Leray reduced order model, J Comput Appl Math, 328, 12-29 (2018) · Zbl 1431.65182
[118] Xu K., Darve E. The neural network approach to inverse problems in differential equations. arXiv:190107758v1; Xu K., Darve E. The neural network approach to inverse problems in differential equations. arXiv:190107758v1
[119] Zhang, G.; Patuwo, B. E.; Hu, M. Y., Forecasting with artificial neural networks: the state of the art, Int J Forecasting, 14, 1, 35-62 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.