×

Transient response improvement of feedback control systems using hybrid reference control. (English) Zbl 1178.93061

Summary: By means of the internal model principle, an approach to improve the performance of a stabilised closed-loop continuous time linear system based on manipulation of the reference signal is developed. A change in the reference signal is equivalent to implementing an instantaneous change via the choice of a decision vector in the state of the reference signal model, and the analysis of the proposed approach called Hybrid Reference Control (HRC) system is then shown to be equivalent to the analysis of a linear impulsive dynamical system. Conditions for asymptotic stability and convergence of the output tracking error for a HRC system are expressed in term of conditions on the decision vectors. Conditions are then derived which guarantee that the HRC system leads to an improved transient performance compared to a conventional closed-loop control system. In particular, it is shown how decision vectors are chosen so that a HRC system results in a deadbeat response.

MSC:

93B52 Feedback control
93D20 Asymptotic stability in control theory
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93B05 Controllability
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson BDO, Optimal Control: Linear Quadratic Methods (1990)
[2] Bainov DD, Systems with Impulse Effect: Stability, Theory and Applications (1989)
[3] DOI: 10.1109/9.557577 · Zbl 0873.93034 · doi:10.1109/9.557577
[4] DOI: 10.1016/S0005-1098(97)00213-6 · Zbl 0949.93025 · doi:10.1016/S0005-1098(97)00213-6
[5] Bode H, Network Analysis and Feedback Amplifier Design (1945)
[6] DOI: 10.1109/9.654885 · Zbl 0951.93002 · doi:10.1109/9.654885
[7] Dorato P, Linear Quadratic Control (1995)
[8] Fallside F, Control System Design by Pole-Zero Assignment (1977) · Zbl 0484.00018
[9] DOI: 10.1016/0005-1098(76)90006-6 · Zbl 0344.93028 · doi:10.1016/0005-1098(76)90006-6
[10] Franklin GF, Feedback Control of Dynamics Systems, 2. ed. (1986)
[11] DOI: 10.1002/rnc.4590050508 · Zbl 0830.93029 · doi:10.1002/rnc.4590050508
[12] DOI: 10.1109/9.83532 · Zbl 0754.93030 · doi:10.1109/9.83532
[13] Graham D, Transactions of the American Institute of Electrical Engineers Part II 72 pp 273– (1953)
[14] Green M, Linear Robust Control (1995)
[15] DOI: 10.1016/0005-1098(87)90029-X · Zbl 0638.93036 · doi:10.1016/0005-1098(87)90029-X
[16] DOI: 10.1109/TAC.2005.843874 · Zbl 1365.93293 · doi:10.1109/TAC.2005.843874
[17] DOI: 10.1080/00207720500443969 · Zbl 1126.93346 · doi:10.1080/00207720500443969
[18] Joelianto, E and Williamson, D. Discrete Event Reference Control. Proceedings of the 36th IEEE Conference Decision Control. 1997. pp.692–697.
[19] Joelianto, E and Williamson, D. Stability of Impulsive Dynamical Systems. Proceedings of the 37th IEEE Conference Decision and Control. 1998. pp.3717–3722.
[20] Joelianto E, in Proceedings Information, Decision and Control pp 205– (2002)
[21] Kailath T, Linear Systems (1980)
[22] DOI: 10.1016/j.robot.2008.10.015 · Zbl 05724937 · doi:10.1016/j.robot.2008.10.015
[23] Kwakernaak H, Linear Optimal Control Systems (1972)
[24] Lakshmikantham V, Theory of Impulsive Differential Equations (1989)
[25] DOI: 10.1016/j.na.2005.12.043 · Zbl 1109.34003 · doi:10.1016/j.na.2005.12.043
[26] Lunze J, Robust Multivariable Feedback Control (1988)
[27] DOI: 10.1093/qjmam/16.2.259 · Zbl 0135.13002 · doi:10.1093/qjmam/16.2.259
[28] MacFarlane AGJ, Proceedings IEE 112 pp 763– (1965)
[29] DOI: 10.1007/s12206-007-1007-8 · doi:10.1007/s12206-007-1007-8
[30] DOI: 10.1109/37.526915 · doi:10.1109/37.526915
[31] Petersen IR, Robust Control Design Using H Methods (2000)
[32] Qu Z, Robust Tracking Control of Robot Manipulators (1996)
[33] Rönnbäck S, unpublished Ph.D. dissertation (1993)
[34] Rosenbrock H, Proceedings IEE Part D 116 pp 1929– (1969)
[35] DOI: 10.1109/TAC.1977.1101404 · Zbl 0346.93033 · doi:10.1109/TAC.1977.1101404
[36] Seron MM, Fundamental Limitations in Filtering and Control (1997) · doi:10.1007/978-1-4471-0965-5
[37] Vidyasagar M, Nonlinear Systems Analysis, 2. ed. (1993)
[38] DOI: 10.1049/ip-d.1992.0016 · Zbl 0758.93027 · doi:10.1049/ip-d.1992.0016
[39] Williamson, D and de Wit, CC. Performance-Oriented Robust Control for Rigid Robot Manipulators. Proceedings of the 32nd IEEE Conference Decision Control. 1993. pp.2143–2148.
[40] Wolovich WA, Linear Multivariable Systems (1974)
[41] Ye, H, Michel, AN and Antsaklis, PJ. A General Model for The Qualitative Analysis of Hybrid Dynamical Systems. Proceedings of the 34th IEEE Conference on Decision Control. 1995. pp.1473–1477.
[42] Zeigler BP, Discrete Event Dynamic Systems: Analyzing Complexity and Performance in The Modern World pp 37– (1992)
[43] Zeigler BP, Theory of Modeling and Simulation, 2. ed. (2000)
[44] Zhou K, Essentials of Robust Control (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.