×

The eye of a mathematical physicist. (English) Zbl 1168.82021

There is a long and interesting discussion around the question of what are neural correlates of doing mathematical physics. The references extend to 148 titles on this subject, including authors own publications. The section Blueprint of a Mathematical Physicist introduces a toy model of a mathematical physicist and gives a certain description of the neuroanatomy of visuo-saccadic system. The binding between kinematics of saccades and the optics of the eye is described in the section Listing’s Low. Further Sections discuss some computational aspects, the space-time transformation on the superior colliculus and the interaction between vision, attention and saccades. The section Translation Invariance reviews some aspects of implementation and new experimental results. The last Section gives an insight into doing mathematical physics in the brain, an example is analyzed.

MSC:

82C32 Neural nets applied to problems in time-dependent statistical mechanics
92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Aksay, E., Olasagasti, I., Mensh, B.D., Baker, R., Goldman, M.S., Tank, D.: Functional dissection of circuitry in a neural integrator. Nature Neurosci. 10, 494–450 (2007) · doi:10.1038/nn1877
[2] Albano, J.E., Mishkin, M., Westbrook, L.E., Wurtz, R.H.: Visuomotor deficits following ablation of monkey superior colliculus. J. Neurophysiol. 48, 338–351 (1982)
[3] Andersen, R.A., Essick, G.K., Siegel, R.M.: The encoding of spatial location by posterior parietal neurons. Science 320, 456–458 (1985) · doi:10.1126/science.4048942
[4] Armstrong, K.M., Fitzgerald, J.K., Moore, T.: Changes in visual receptive fields with microstimulation of frontal cortex. Neuron 50, 791–798 (2006) · doi:10.1016/j.neuron.2006.05.010
[5] Bauby, J.-D.: Le Scaphandre et le Papillon. Laffont, Paris (1997)
[6] Bays, P.M., Husain, M.: Spatial remapping of the visual world accross saccades. NeuroRep. 18, 1207–1213 (2007) · doi:10.1097/WNR.0b013e328244e6c3
[7] Binzegger, T., Douglas, R.J., Martin, K.A.C.: A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004) · doi:10.1523/JNEUROSCI.1400-04.2004
[8] Bruce, C.J., Goldberg, M.E.: Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985)
[9] Bruce, C.J., Goldberg, M.E., Bushnell, M.C., Stanton, G.B.: Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734 (1985)
[10] Byers, W.: How Mathematicians Think. Princeton University Press, Princeton (2007) · Zbl 1123.00003
[11] Cantion, J.F., Brannon, E.M.: Basic math in monkeys and college students. PLoS Biol. 5, 2912–2919 (2007)
[12] Changeux, J.-P., Connes, A.: Conversations on Mind, Matter, and Mathematics. Princeton University Press, Princeton (1998)
[13] Colby, C.L., Goldberg, M.E.: Space and attention in parietal cortex. Ann. Rev. Neurosci. 22, 319–349 (1999) · doi:10.1146/annurev.neuro.22.1.319
[14] Cox, D.D., Di Carlo, J.J.: Does learned shape selectivity in inferior temporal cortex automatically generalize across retinal position? J. Neurosci. 28, 10045–10055 (2008) · doi:10.1523/JNEUROSCI.2142-08.2008
[15] Cox, D.D., Meier, P., Oetelt, N., DiCarlo, J.J.: ’Breaking’ position invariant object recognition. Nat. Neurosci. 8, 1145–1147 (2005) · doi:10.1038/nn1519
[16] Crawford, J.D.: Listing’s law: what’s all the hubbob? In: Harris, L.R., Jenkins, M. (eds.) Vision and Action. Cambridge University Press, Cambridge (1998)
[17] Curcio, C.A., Sloan, K.R., Kalina, R.E., Hendrickson, A.E.: Human photoreceptor topography. J. Comput. Neurol. 292, 497–523 (1990) · doi:10.1002/cne.902920402
[18] Davis, P.J., Hersh, R.: The Mathematical Experience. Birkhäuser, Boston (1980)
[19] Dehaene, S.: The Number Sense: How the Mind Creates Mathematics. Oxford University Press, London (1997) · Zbl 1041.00504
[20] Dehaene, S., Changeux, J.-P.: Development of elementary numerical abilities: a neuronal model. J. Cogn. Neurosci. 5, 390–407 (1993) · doi:10.1162/jocn.1993.5.4.390
[21] Dehaene, S., Changeux, J.-P.: Ongoing spontaneous activity controls access to consciousness: a model for inattentional blindness. PLoS Biol. 3, 910–927 (2005) · doi:10.1371/journal.pbio.0030141
[22] Demer, J.L., Kono, R., Wright, W.: Magnetic resonance imaging of human extraocular muscles in convergence. J. Neurophysiol. 89, 2072–2085 (2003) · doi:10.1152/jn.00636.2002
[23] Descartes, R.: Oeuvres et lettres, Pléiade. Gallimard, Paris (1953)
[24] Deubel, H., Schneider, W.X.: Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis. Res. 36, 1827–1837 (1996) · doi:10.1016/0042-6989(95)00294-4
[25] Diester, I., Nieder, A.: Semantic associations between signs and numerical categories in the prefrontal cortex. PLoS Biol. 5, 2684–2695 (2007) · doi:10.1371/journal.pbio.0050294
[26] Diester, I., Nieder, A.: Complementary contributions of prefrontal neuron classes in abstract numerical catagorization. J. Neurosci. 28, 7737–7747 (2008) · doi:10.1523/JNEUROSCI.1347-08.2008
[27] Douglas, R.J., Martin, K.A.C.: A functional microcircuit for cat visual cortex. J. Phys. (Lond.) 440, 735–769 (1991)
[28] Douglas, R.J., Martin, K.A.C.: Neuronal circuits of the neocortex. Ann. Rev. Neurosci. 27, 419–451 (2004) · doi:10.1146/annurev.neuro.27.070203.144152
[29] Douglas, R.J., Martin, K.A.C.: Mapping the matrix: the ways of neocortex. Neuron 56, 226–238 (2007) · doi:10.1016/j.neuron.2007.10.017
[30] Douglas, R.J., Martin, K.A.C., Witteridge, D.: A canonical microcircuit for neocortex. Neural Comput. 1, 480–488 (1989) · doi:10.1162/neco.1989.1.4.480
[31] Duhamel, J.-R., Colby, C.L., Goldberg, M.E.: The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992) · doi:10.1126/science.1553535
[32] Epshtein, B., Lifshitz, I., Ullman, S.: Image interpretation by a single bottom-up top-down cycle. Proc. Natl. Acad. Sci. USA 105, 14298–14303 (2008) · doi:10.1073/pnas.0800968105
[33] Euclid (300) Euclid’s Elements, Todhunter I. (ed.) Everyman’s Library, London (1933) · JFM 59.0857.10
[34] Everling, S., Paré, M., Dorris, M.C., Munoz, D.P.: Comparison of the discharge characteristics of brain stem omnipause neurons and superior colliculus fixation neurons in monkey: implication for control of fixation and saccade behavior. J. Neurophysiol. 79, 511–528 (1998)
[35] Fias, W., Lammertyn, J., Caessens, B., Orban, G.A.: Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus. J. Neurosci. 27, 8952–8956 (2007) · doi:10.1523/JNEUROSCI.2076-07.2007
[36] Fries, P.: A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends. Cogn. Sci. 9, 474–480 (2005) · doi:10.1016/j.tics.2005.08.011
[37] Gawne, T.J., Martin, J.M.: Response of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. J. Neurophysiol. 88, 2178–2186 (2002) · doi:10.1152/jn.00151.200
[38] Goossens, H.H.L.M., van Opstal, A.J.: Blink-perturbed saccades in monkey. I. Behavioral analysis. J. Neurophysiol. 83, 3411–3429 (2000)
[39] Goossens, H.H.L.M., van Opstal, A.J.: Blink-perturbed saccades in monkey. II. Superior colliculus activity. J. Neurophysiol. 83, 3430–3452 (2000)
[40] Goossens, H.H.L.M., Van Opstal, A.J.: Dynamic ensemble coding of saccades in the monkey superior colliculus. J. Neurophysiol. 95, 2326–2341 (2006) · doi:10.1152/jn.00889.2005
[41] Gotts, S.J., Gregoriou, G.G., Zhou, H., Desimone, R.: Synchronous activity within and between areas V4 and FEF in attention. Neuroscience Meeting, Atlanta #703.7 (2006)
[42] Guthrie, B.L., Porter, J.D., Sparks, D.L.: Corollary discharge provides accurate eye position information to the oculomotor system. Science 221, 1193–1195 (1983) · doi:10.1126/science.6612334
[43] Hahnloser, R., Douglas, R.J., Mahowald, M., Hepp, K.: Feedback interactions between neuronal pointers and maps for attentional processing. Nature Neurosci. 2, 746–752 (1999) · doi:10.1038/11219
[44] Haslwanter, T., Straumann, D., Hepp, K., Hess, B.J.M., Henn, V.: Smooth pursuit eye movements obey Listing’s law in the monkey. Exp. Brain Res. 87, 470–872 (1991) · doi:10.1007/BF00231865
[45] Heinzle, J.: A model of the local cortical circuit of the frontal eye fields. Diss ETHZ No. 16897 (2006)
[46] Heinzle, J., Hepp, K., Martin, K.A.C.: A microcircuit model of the frontal eye fields. J. Neurosci. 27, 9341–9353 (2007) · doi:10.1523/JNEUROSCI.0974-07.2007
[47] Heinzle, J., Hepp, K., Martin, K.A.C.: A biologically realistic cortical model of eye movement control in reading. Submitted (2009)
[48] Heiser, L.M., Colby, C.C.: Spatial updating in area LIP is independent of saccade direction. J. Neurophysiol. 95, 2751–2767 (2006) · doi:10.1152/jn.00054.2005
[49] Hepp, K.: On Listing’s law. Commun. Math. Phys. 132, 285–292 (1990) · Zbl 0706.92009 · doi:10.1007/BF02278012
[50] Hepp, K.: Theoretical explanations of Listing’s law and their implication for binocular vision. Vis. Res. 35, 3237–3242 (1995) · doi:10.1016/0042-6989(95)00104-M
[51] Hepp, K., van Opstal, A.J., Straumann, D., Hess, B.J.M., Henn, V.: Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map. J. Neurophysiol. 69, 965–979 (1993)
[52] Hikosaka, O., Takikawa, Y., Kawagoe, R.: Role of the basal ganglia in the control of purposive saccadic eye movements. Phys. Rev. 80, 953–978 (2000)
[53] Hubbard, E.M., Piazza, M., Pinel, P., Dehaene, S.: Interactions between number and space in parietal cortex. Nature Rev. Neurosci. 6, 435–448 (2005) · doi:10.1038/nrn1684
[54] Hubel, D.H., Wiesel, T.N.: Functional architecture of macaque visual cortex. Proc. R. Soc. Lond. B 198, 1–59 (1977) · doi:10.1098/rspb.1977.0085
[55] Irwin, D.E.: Information integration across saccadic eye movements. Cogn. Psychol. 23, 420–456 (1991) · doi:10.1016/0010-0285(91)90015-G
[56] Izard, D., Dehaene-Lambertz, G., Dehaene, S.: Distinct cerebral pathways for object identity and number in human infants. PLoS Biol. 6, 275–285 (2008) · doi:10.1371/journal.pbio.0060011
[57] Kant, I.: Kritik der reinen Vernunft. Suhrkamp, Frankfurt (1787) (Weischedel, W., ed.). English translation by Guyer P., Wood A.W.: Critique of Pure Reason. Cambridge University Press, Cambridge (1998)
[58] Kato, R., Grantyn, A., Dalezios, Y., Moschovakis, A.K.: The local loop of the saccadic system closes downstream of the superior colliculus. Neuroscience 143, 319–337 (2006) · doi:10.1016/j.neuroscience.2006.07.016
[59] Keller, E.L., Lee, K.-M., Park, S.-W., Hill, J.A.: The effect of inactivation of the cortical frontal eye field on saccades generated in a choice-response paradigm. J. Neurophysiol. 100, 2726–2737 (2008) · doi:10.1152/jn.90673.2008
[60] Khan, A.Z., Blangero, A., Rosetti, Y., Salemme, R., Luauté, J., Deubel, H., Schneider, W.X., Laverdure, N., Rode, G., Boisson, D., Pisella, L.: Parietal damage dissociates saccade planning from presaccadic perceptual facilitation. Cereb. Cortex 19, 383–387 (2009) · doi:10.1093/cercor/bhn088
[61] Klier, E.M., Wang, H., Crawford, J.D.: The superior colliculus encodes gaze commands in retinal coordinates. Nature Neurosci. 4, 627–632 (2001) · doi:10.1038/88450
[62] Krauzlis, R.J.: Recasting the smooth pursuit eye movement system. J. Neurophysiol. 91, 591–603 (2004) · doi:10.1152/jn.00801.2003
[63] Krueger, F., Scampinato, M.V., Pardini, M., Pajevic, S., Wood, J.N., Weiss, G.H., Landgraf, S., Grafman, J.: Integral calculus problem solving: an fMRI investigation. NeuroReport 19, 1095–1099 (2008) · doi:10.1097/WNR.0b013e328303fd85
[64] Loetscher, T., Bockisch, C.J., Brugger, P.: Looking for the answer: the mind’s eye in number space. Neuroscience 151, 725–729 (2008) · doi:10.1016/j.neuroscience.2007.07.068
[65] Marino, R.A., Rodgers, C.K., Levy, R., Munoz, D.P.: The spatial representation of visuomotor transformations in the superior colliculus. J. Neurophysiol. 100, 2564–2576 (2008) · doi:10.1152/jn.90688.2008
[66] Markram, H.: The blue brain project. Nature Rev. Neurosci. 7, 153–160 (2006) · doi:10.1038/nrn1848
[67] Marr, D.: Vision. Freeman, San Francisco (1982)
[68] Mays, L.E., Sparks, D.L.: Dissociation of visual and saccade-related responses in superior colliculus neurons. J. Neurophysiol. 43, 207–232 (1980)
[69] McPeek, R.M.: Incomplete suppression of distractor-related activity in the frontal eye field results in curved saccades. J. Neurophysiol. 96, 2699–2711 (2006) · doi:10.1152/jn.00564.2006
[70] McPeek, R.M., Han, J.H., Keller, E.L.: Competition between saccade goals in the superior colliculus produces saccade curvature. J. Neurophysiol. 89, 2577–2590 (2003) · doi:10.1152/jn.00657.2002
[71] Melcher, D., Colby, C.L.: Trans-saccadic perception. Trends Cogn. Sci. 12, 466-473 (2008)
[72] Miller, J.M., Robins, D.: Extraocular muscle sideslip and orbital geometry in monkeys. Vis. Res. 27, 381–392 (1987) · doi:10.1016/0042-6989(87)90087-3
[73] Montale, E.: Tutte le poesie. Montadori, Milano (1977)
[74] Müller, J.R., Mehta, A.B., Krauskopf, J., Lennie, P.: Information conveyed by onset transients in responses of striate cortical neurons. J. Neurosci. 21, 6978–6990 (2001)
[75] Munoz, D.P., Everling, S.: Look away: the antisaccade task and the volontary control of movement. Nature Rev. Neurosci. 5, 218–228 (2004) · doi:10.1038/nrn1345
[76] Munoz, D.P., Wurtz, R.H.: Fixation cells in monkey superior colliculus I. Characteristics of cell discharge. J. Neurophysiol. 70, 559–575 (1993)
[77] Nakamura, K., Colby, C.L.: Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc. Natl. Acad. Sci. USA 99, 4026–4031 (2002) · doi:10.1073/pnas.052379899
[78] Newton, I.: Philosophiae Naturalis Principia Mathematica. Pepys, London (1687)
[79] Nieder, A.: Counting on neurons: the neurobiology of numerical competence. Nature Rev. Neurosci. 6, 177–190 (2005) · doi:10.1038/nrn1626
[80] Nieder, A., Diester, I., Tudusciuc, O.: Temporal and spatial enumeration processes in the primate parietal cortex. Science 313, 1431–1435 (2006) · doi:10.1126/science.1130308
[81] Nieder, A., Merten, K.: A labeled-line code for small and large numerosities in the monkey prefrontal cortex. J. Neurosci. 27, 5986–5993 (2007) · doi:10.1523/JNEUROSCI.1056-07.2007
[82] Nieder, A., Miller, E.K.: Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37, 149–157 (2003) · doi:10.1016/S0896-6273(02)01144-3
[83] Nieder, A., Miller, E.K.: A parieto-frontal network for visual numerical information in the monkey. Proc. Natl. Acad. Sci. USA 101, 7457–7462 (2004) · doi:10.1073/pnas.0402239101
[84] Olshausen, B.A., Field, D.J.: How close are we to understanding V1? Neural Comput. 17, 1665–1699 (2005) · Zbl 1071.92009 · doi:10.1162/0899766054026639
[85] Ottes, F.P., van Gisbergen, J.A.M., Eggermont, J.J.: Visuomotor fields of the superior colliculus: a quantitative model. Vis. Res. 26, 857–873 (1986) · doi:10.1016/0042-6989(86)90144-6
[86] Penrose, R.: Shadows of the Mind. Oxford University Press, New York (1995) · Zbl 0847.00001
[87] Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics. Science 318, 1088–1093 (2007) · doi:10.1126/science.1145803
[88] Piazza, M., Izard, V., Pinel, P., Le Bihan, D., Dehaene, S.: Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron 44, 547–555 (2004) · doi:10.1016/j.neuron.2004.10.014
[89] Piazza, M., Pinel, P., Le Bihan, D., Dehaene, S.: A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron 53, 293–305 (2007) · doi:10.1016/j.neuron.2006.11.022
[90] Pica, P., Lemer, C., Izard, V., Dehaene, S.: Exact and approximate arithmetic in a Amazonian indigene group. Science 306, 499–503 (2004) · doi:10.1126/science.1102085
[91] Prime, S.L., Tsotsos, L., Keith, G.P., Crawford, J.D.: Visual memory capacity in transsaccadic integration. Exp. Brain Res. 180, 609–628 (2007) · doi:10.1007/s00221-007-0885-4
[92] Rao, S.C., Rainer, G., Miller, E.K.: Integration of what and where in the primate prefrontal cortex. Science 276, 821–824 (1997) · doi:10.1126/science.276.5313.821
[93] Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neurosci. 2, 1019–1025 (1999) · doi:10.1038/14819
[94] Robinson, D.A.: A method of measuring eye movements using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10, 137–145 (1963)
[95] Robinson, D.A.: Oculomotor unit behavior in the monkey. J. Neurophysiol. 33, 393–404 (1970)
[96] Robinson, D.A.: Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12, 1795–1808 (1981) · doi:10.1016/0042-6989(72)90070-3
[97] Robinson, D.A.: The use of control systems analysis in the neurophysiology of eye movements. Ann. Rev. Neurosci. 4, 463–503 (1981) · doi:10.1146/annurev.ne.04.030181.002335
[98] Robinson, D.A.: Implications of neural networks for how we think about brain function. Behav. Brain Sci. 15, 644–553 (1992)
[99] Robinson, D.A., Fuchs, A.F.: Eye movements evoked by stimulation of frontal eye fields. J. Neurophysiol. 32, 637–648 (1969)
[100] Roitman, J.D., Brannon, E.M., Platt, M.L.: Monotonic coding of numerosity in macaque lateral intraparietal area. PLoS Biol. 5, 1672–1682 (2007) · doi:10.1371/journal.pbio.0050208
[101] Ruelle, D.: The Mathematician’s Brain. Princeton University Press, Princeton (2007) · Zbl 1131.00001
[102] Salinas, E., Abbott, L.F.: A model of multiplicative neural responses in parietal cortex. Proc. Natl. Acad. Sci. USA 93, 11956–11961 (1997) · doi:10.1073/pnas.93.21.11956
[103] Salinas, E., Thier, P.: Gain modulation: a major computational principle of the central nervous system. Neuron 27, 15–21 (2000) · doi:10.1016/S0896-6273(00)00004-0
[104] Sato, T.R., Schall, J.D.: Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron 38, 637–648 (2003) · doi:10.1016/S0896-6273(03)00237-X
[105] Scherberger, H., Cabungcal, J.-H., Hepp, K., Suzuki, Y., Straumann, D., Henn, V.: Ocular counterroll modulates the preferred direction of saccade-related burst neurons in the monkey. J. Neurophysiol. 86, 935–493 (2001)
[106] Schiller, P., Stryker, M.: Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 35, 915–924 (1972)
[107] Schiller, P.H., True, S.D., Conway, J.L.: Deficits in eye movements following frontal eye field and superior colliculus ablations. J. Neurophysiol. 44, 1175–1189 (1980)
[108] Schnyder, H., Reisine, H., Hepp, K., Henn, V.: Frontal eye field projection to the paramedian pontine reticular formation traced with wheat germ agglutinin in the monkey. Brain Res. 329, 151–160 (1985) · doi:10.1016/0006-8993(85)90520-7
[109] Schultz, J.E., Hallowell, K.A., Ellis Jr., W., Kennedy, P.A., Engelbrecht, M., Rutkowsky, K.: Geometry. Holt, Rinehart & Winston, Austin (2001)
[110] Schwartz, E.L.: Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding. Vis. Res. 20, 645–669 (1980) · doi:10.1016/0042-6989(80)90090-5
[111] Scudder, C.A.: A new local feedback model of the saccadic burst generator. J. Neurophysiol. 59, 1455–1475 (1988)
[112] Scudder, C.A., Kaneko, C.R.S., Fuchs, A.F.: The brainstem burst generator for saccadic eye movements. A modern synthesis. Exp. Brain Res. 142, 439–462 (2002) · doi:10.1007/s00221-001-0912-9
[113] Segraves, M.A.: Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. J. Neurophysiol. 68, 1967–1985 (1992)
[114] Sehatpour, P., Molholm, S., Schwartz, T.H., Mahoney, J.R., Mehta, A.D., Javitt, J.C., Stanton, P.K., Foxe, J.J.: A human intracranial study of long-range oscillatory coherence across a frontal-occipital-hippocampal brain network during visual object processing. Proc. Natl. Acad. Sci. USA 105, 4399–4404 (2008) · doi:10.1073/pnas.0708418105
[115] Serre, T., Oliva, A., Poggio, T.: A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. USA 104, 6424–6429 (2007) · doi:10.1073/pnas.0700622104
[116] Siegel, M., Donner, T.H., Oostenveld, R., Fries, P., Engel, A.K.: Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60, 709–719 (2008) · doi:10.1016/j.neuron.2008.09.010
[117] Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Ann. Rev. Neurosci. 18, 555–586 (1995) · doi:10.1146/annurev.ne.18.030195.003011
[118] Sommer, M.A., Wurtz, R.H.: What the brainstem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J. Neurophysiol. 91, 1403–1423 (2004) · doi:10.1152/jn.00740.2003
[119] Sommer, M.A., Wurtz, R.H.: What the brainstem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol. 91, 1381–1402 (2004) · doi:10.1152/jn.00738.2003
[120] Sommer, M.A., Wurtz, R.H.: Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444, 374–377 (2006) · doi:10.1038/nature05279
[121] Sommer, M.A., Wurtz, R.H.: Brain circuits for the internal monitoring of movements. Ann. Rev. Neurosci. 31, 317–338 (2008) · doi:10.1146/annurev.neuro.31.060407.125627
[122] Soon, C.S., Brass, M., Heinze, H.J., Haynes, J.D.: Unconscious determinants of free decisions in the human brain. Nature Neurosci. 11, 543–45 (2008) · doi:10.1038/nn.2112
[123] Sparks, D.L.: Translation of sensory signals into commands for the control of saccadic eye movements: role of primate superior colliculus. Physiol. Rev. 66, 118–171 (1986)
[124] Sparks, D.L.: The brainstem control of saccadic eye movements. Nature Rev. Neurosci. 3, 952–964 (2002) · doi:10.1038/nrn986
[125] Sparks, D.L., Mays, L.E.: Movement fields of saccade-ralated burst neurons in monkey superior colliculus. Brain Res. 190, 39–50 (1980) · doi:10.1016/0006-8993(80)91158-0
[126] Sperry, R.W.: Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comput. Physiol. Psychol. 43, 482–489 (1950) · doi:10.1037/h0055479
[127] Strassman, A., Highstein, S.M., McCrea, R.A.: Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. I. Excitatory burst neurons. J. Comput. Neurol. 249, 337–357 (1986) · doi:10.1002/cne.902490303
[128] Strassman, A., Highstein, S.M., McCrea, R.A.: Anatomy and physiology of saccadic burst neurons in the alert squirrel monkey. II. Inhibitory burst neurons. J. Comput. Neurol. 249, 358–380 (1986) · doi:10.1002/cne.902490304
[129] Synofzik, M., Lindner, A., Thier, P.: The cerebellum updates predictions about the visual consequences of one’s behavior. Current Biol. 18, 814–818 (2008) · doi:10.1016/j.cub.2008.04.071
[130] Tanji, J., Hoshi, E.: Role of the lateral prefrontal cortex in executive behavioral control. Physiol. Rev. 88, 37–57 (2008) · doi:10.1152/physrev.00014.2007
[131] Thompson, K.G., Biscoe, K.L., Sato, T.R.: Neuronal basis of covert spatial attention in the frontal eye field. J. Neurosci. 25, 9479–9487 (2005) · doi:10.1523/JNEUROSCI.0741-05.2005
[132] Tolias, A.S., Moore, T., Smirnakis, S.M., Tehovnik, E.J., Siapas, A.G., Schiller, P.J.: Eye movements modlate visual receptive fields of V4 neurons. Neuron 29, 757–767 (2001) · doi:10.1016/S0896-6273(01)00250-1
[133] Tootell, R.B.H., Switkes, E., Silverman, M.S., Hamilton, S.L.: Functional anatomy of macaque striate cortex. II. Retinotopic organization. J. Neurosci. 8, 1531–1568 (1988)
[134] Tudusciuc, O., Nieder, A.: Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. PNAS 104, 14513–14518 (2007) · doi:10.1073/pnas.0705495104
[135] Tweed, D.: Visual-motor optimization in binocular control. Vis. Res. 37, 1939–1951 (1997) · doi:10.1016/S0042-6989(97)00002-3
[136] Tweed, D., Vilis, T.: The superior colliculus and spatiotemporal translation in the saccadic system. Neural Netw. 3, 75–86 (1990) · doi:10.1016/0893-6080(90)90046-N
[137] Tweed, D., Fetter, M., Anreadaki, S., Koenig, E., Dichgans, J.: Three-dimensional properties of human pursuit eye movements. Vis. Res. 32, 1225–1238 (1992) · doi:10.1016/0042-6989(92)90217-7
[138] Umeno, M.M., Goldberg, M.E.: Spatial processing in the monkey frontal eye field. I. Predictive visual responses. J. Neurophysiol. 78, 1373–1383 (1997)
[139] Umeno, M.M., Goldberg, M.E.: Spatial processing in the monkey frontal eye field. II. Memory responses. J. Neurophysiol. 86, 2344–2352 (2001)
[140] van Gisbergen, J.A.M., Robinson, D.A., Gielen, S.: A quantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiol. 45, 417–442 (1981)
[141] van Gisbergen, J.A.M., van Opstal, A.J., Tax, A.A.M.: Collicular ensemble coding of saccades based on vector summation. Neuroscience 21, 541–555 (1987) · doi:10.1016/0306-4522(87)90140-0
[142] van Opstal, A.J., Goossens, H.H.L.M.: Linear ensemble-coding in midbrain superior colliculus specifies the saccade kinematics. Biol. Cybern. 98, 561–577 (2008) · Zbl 1172.92347 · doi:10.1007/s00422-008-0219-z
[143] van Opstal, A.J., Hepp, K., Hess, B.J.M., Straumann, D., Henn, V.: Two- rather than three-dimensional representation of saccades in monkey superior colliculus. Science 252, 1313–1315 (1991) · doi:10.1126/science.1925545
[144] van Opstal, A.J., Hepp, K., Suzuki, Y., Henn, V.: Role of monkey nucleus reticularis tegmenti pontis in the stabilization of Listing’s plane. J. Neurosci. 15, 7284–7296 (1996)
[145] Verguts, T., Fias, W.: Representation of number in animals and humans: a neural model. J. Cogn. Neurosci. 16, 1493–1504 (2004) · doi:10.1162/0898929042568497
[146] von Helmholtz, H.: Handbuch der Physiologischen Optik. Voss, Leipzig (1867) · ERAM 067.1747cj
[147] von Holst, E., Mittelstaedt, H.: Das Reafferenzprinzip. Wechselwirkungen zwischen Centralnervensystem und Peripherie. Naturwissenschaften 37, 464–476 (1950) · doi:10.1007/BF00622503
[148] Walker, M.F., Fitzgibbon, E.J., Goldberg, M.E.: Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J. Neurophysiol. 73, 1988–2003 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.