×

Alternating projection method for sparse model updating problems. (English) Zbl 1360.65111

Summary: Sparse model updating problems, considered in this paper, focus on updating the constructed second-order finite element model under the sparsity constraint, that is, the updated model should have the desired eigenvalues and eigenvectors, and preserve the symmetry, positive semi-definiteness, and sparsity of the original model. In the process of performing model updating, sparsity of the model, which implies the inner connectivity and other physical properties of the updated system, plays a critically important role in the model updating problems. However, very few results in the earlier literature have paid attention to this important constraint due to the difficulty associated with it. In this paper, an alternating projection method, which is versatile enough to solve a huge class of sparse model updating problems, is presented. A distinct practical feature of this method is that it is easy to design and develop because, in the process of applying this method, one only needs to alternatively find the optimal solutions of some matrix approximation problems arising naturally from the requirement of practical application. And our numerical results demonstrate that alternating projection is an effective tool for sparse model updating problems.

MSC:

65F18 Numerical solutions to inverse eigenvalue problems
15A22 Matrix pencils

Software:

YALMIP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics. Solid mechanics and its application, vol 38. Kluwer Academic Publishers Group, Dordrecht (chapter 10 by Marc Brughmans, Jan Leuridan and Kevin Blauwkamp) · Zbl 0855.73002
[2] Bai Z-J, Chu D, Sun D (2007) A dual optimization approach to inverse quadratic eigenvalue problems with partial eigenstructure. SIAM J Sci Comput 29(6):2531-2561 · Zbl 1154.65312
[3] Kuo Y-C, Lin W-W, Xu S-F (2006/07) Solutions of the partially described inverse quadratic eigenvalue problem. SIAM J Matrix Anal Appl 29(1):33-53 · Zbl 1137.65020
[4] Liu H, Yuan Y (2012) A gradient based iterative algorithm for solving model updating problems of gyroscopic systems. Appl Math Model 36(10):4810-4816 · Zbl 1252.70017 · doi:10.1016/j.apm.2011.12.016
[5] Chen MX (2012) Guass-Seidel method to solve a finite element model updating problem. J Math Study 45(1):66-72
[6] Ye M (2009) An inexact steepest descent method for a finite element model updating problem. Acta Math Appl Sin 32(5):894-902 · Zbl 1201.74280
[7] Berman A, Nagy EJ (1983) Improvement of a large analytical model using test data. AIAA J 21:1168-1173 · doi:10.2514/3.60140
[8] Chu D, Chu M, Lin W-W (2009) Quadratic model updating with symmetry, positive definiteness, and no spill-over. SIAM J Matrix Anal Appl 31(2):546-564 · Zbl 0661.65033 · doi:10.1137/080726136
[9] Kuo Y-C, Datta BN (2012) Quadratic model updating with no spill-over and incomplete measured data: existence and computation of solution. Linear Algebra Appl 436(7):2480-2493 · Zbl 1236.65037 · doi:10.1016/j.laa.2011.11.019
[10] Wei F-S (1990) Mass and stiffness interaction effects in analytical model modification. AIAA J 28:1686-1688 · doi:10.2514/3.25269
[11] Yuan Q, Dai H (2009) Optimal matrix approximation in finite element model updating. Numer Math J Chin Univ 31(2):181-192 · Zbl 1199.65153
[12] Bai Z-J (2008) Symmetric tridiagonal inverse quadratic eigenvalue problems with partial eigendata. Inverse Probl 24(1):015005, 24 · Zbl 1154.35461 · doi:10.1088/0266-5611/24/1/015005
[13] Chu MT, Del Buono N, Yu B (2007) Structured quadratic inverse eigenvalue problem, I. Serially linked systems. SIAM J Sci Comput 29(6):2668-2685 · Zbl 1154.65313
[14] Chu MT, Xu S-F (2005) On computing minimal realizable spectral radii of non-negative matrices. Numer Linear Algebra Appl 12(1):77-86 · Zbl 1164.65369 · doi:10.1002/nla.395
[15] Bai Z-J (2008) Constructing the physical parameters of a damped vibrating system from eigendata. Linear Algebra Appl 428(2-3):625-656 · Zbl 1139.65029 · doi:10.1016/j.laa.2007.08.014
[16] Dong B, Lin MM, Chu MT (2009) Parameter reconstruction of vibration systems from partial eigeninformation. J Sound Vib 327(3-5):391-401 · doi:10.1016/j.jsv.2009.06.026
[17] Moreno J, Datta B, Raydan M (2009) A symmetry preserving alternating projection method for matrix model updating. Mech Syst Signal Process 23(6):1784-1791 special Issue: Inverse Problems · Zbl 1198.65002 · doi:10.1016/j.ymssp.2008.06.011
[18] von Neumann J (1951) Functional operators, Volume 2: The geometry of orthogonal spaces, Annals of Mathematics Studies, vol 22. Princeton University Press, Princeton
[19] Halperin I (1962) The product of projection operators. Acta Sci Math (Szeged) 23:96-99 · Zbl 0143.16102
[20] Bauschke HH, Borwein JM (1996) On projection algorithms for solving convex feasibility problems. SIAM Rev 38(3):367-426 · Zbl 0461.65052 · doi:10.1137/S0036144593251710
[21] Cheney W, Goldstein AA (1959) Proximity maps for convex sets. Proc Am Math Soc 10:448-450 · Zbl 0092.11403 · doi:10.1090/S0002-9939-1959-0105008-8
[22] Dykstra RL (1983) An algorithm for restricted least squares regression. J Am Stat Assoc 78(384):837-842 · Zbl 0535.62063 · doi:10.1080/01621459.1983.10477029
[23] Han S-P (1988) A successive projection method. Math Program 40(1):1-14 · Zbl 0685.90074
[24] Fiorot J-C, Huard P (1979) Composition and union of general algorithms of optimization. Point-to-set maps and mathematical programming. In: Huard P (ed) Mathematical Programming Studies, vol 10, pp 69-85 · Zbl 0403.90072
[25] Blahut RE (1972) Computation of channel capacity and rate-distortion functions. IEEE Trans Inform Theory IT-18:460-473 · Zbl 0247.94017 · doi:10.1109/TIT.1972.1054855
[26] Serbes A, Durak L (2010) Optimum signal and image recovery by the method of alternating projections in fractional Fourier domains. Commun Nonlinear Sci Numer Simul 15(3):675-689 · Zbl 1221.94013 · doi:10.1016/j.cnsns.2009.05.013
[27] Higham NJ (2002) Computing the nearest correlation matrix—a problem from finance. IMA J Numer Anal 22(3):329-343 · Zbl 1006.65036 · doi:10.1093/imanum/22.3.329
[28] Xu J, Zikatanov L (2002) The method of alternating projections and the method of subspace corrections in Hilbert space. J Amer Math Soc 15(3):573-597 · Zbl 0999.47015 · doi:10.1090/S0894-0347-02-00398-3
[29] Cegielski A, Suchocka A (2008) Relaxed alternating projection methods. SIAM J Optim 19(3):1093-1106 · Zbl 1180.65073 · doi:10.1137/070698750
[30] Galántai A (2005) On the rate of convergence of the alternating projection method in finite dimensional spaces. J Math Anal Appl 310(1):30-44 · Zbl 1074.65059 · doi:10.1016/j.jmaa.2004.12.050
[31] Zhang J, Wei Z (2011) A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising. Appl Math Model 35(5):2516-2528 · Zbl 1217.94024 · doi:10.1016/j.apm.2010.11.049
[32] Kopecká E, Reich S (2010) Another note on the von Neumann alternating projections algorithm. J Nonlinear Convex Anal 11(3):455-460 · Zbl 1207.46022
[33] Monsalve M, Moreno J, Escalante R, Raydan M (2003) Selective alternating projections to find the nearest SDD \[^+\]+ matrix. Appl Math Comput 145(2-3):205-220 · Zbl 1032.65040 · doi:10.1016/S0096-3003(02)00478-2
[34] Higham NJ (1988) Computing a nearest symmetric positive semidefinite matrix. Linear Algebra Appl 103:103-118 · Zbl 0649.65026 · doi:10.1016/0024-3795(88)90223-6
[35] Löfberg J (2004) YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the IEEE CACSD conference, Taipei · Zbl 1217.94024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.