×

A QSPR-like model for multilocus genotype networks of Fasciola hepatica in Northwest Spain. (English) Zbl 1411.92293

Summary: Fasciola hepatica is a parasitic trematode that infects wild and domesticated mammals, particularly cattle and sheep, and causes significant economic losses to global livestock production. In the present study, we used codominant genetic markers to define and build, for the first time, complex genotype networks for F. hepatica isolated from cattle and sheep in NW Spain. We generated three types of random networks with a number of nodes and edges as close as possible to the observed networks, and we then calculated 14 node centrality measures for both observed and random networks. Finally, using linear discriminant analysis (LDA) and these measures as inputs, we constructed a quantitative structure-property relationship (QSPR)-like model able to predict the propensity of a specific genotype of F. hepatica to infect different infrapopulations, farms and/or host species. The accuracy, sensitivity and specificity of the model were \(>90\%\) for both training and cross-validation series. We also assessed the applicability domain of the model. This type of QSPR model is a potentially powerful tool for epidemiological studies and could be used to manage and prevent the spread of fasciolosis.

MSC:

92D30 Epidemiology
92C42 Systems biology, networks
05C90 Applications of graph theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aguero-Chapín, G.; Antunes, A.; Ubeira, F. M.; Chou, K. C.; González-Díaz, H., Comparative study of topological indices of macro/supra-molecular RNA complex networks, J. Chem. Inf. Model., 48, 2265-2277 (2008)
[2] Althaus, IW; Chou, JJ; Gonzales, AJ; Diebel, MR, Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E, J. Biol. Chem, 268, 6119-6124 (1993)
[3] Althaus, I. W.; Gonzales, A. J.; Chou, J. J.; Romero, D. L.; Diebel, M. R.; Chou, K. C.; Kezdy, F. J.; Resnick, L.; Busso, M. E.; So, A. G.; Downey, K. M.; Thomas, R. C.; Aristoff, P. A.; Tarpley, W. G.; Reusser, Fritz, The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase, J. Biol. Chem., 268, 14875-14880 (1993)
[4] Altmann, M., Reinterpreting network measures for models of disease transmission, Soc. Networks, 15, 1-17 (1993)
[5] Andraos, J., Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs, Can. J. Chem, 86, 342-357 (2008)
[6] Barigye, S. J.; Marrero-Ponce, Y.; Martínez López, Y.; Martínez Santiago, O.; Torrens, F.; García Domenech, R.; Galvez, J., Event-based criteria in GT-STAF information indices: theory, exploratory diversity analysis and QSPR applications, SAR QSAR Environ. Res, 24, 3-34 (2013)
[7] Batagelj, V.; Mrvar, A., Pajek: a program for large network analysis, Connections, 21, 47-57 (1998), (Available from)
[8] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. U., Complex networks: structure and dynamics, Phys. Rep., 424, 175-308 (2006) · Zbl 1371.82002
[9] Bonchev, D.; Buck, G. A., From molecular to biological structure and back, J. Chem. Inf. Model., 47, 909-917 (2007)
[10] Bornholdt, S.; Schuster, H. G., Handbook of Graphs and Networks: From the Genome to the Internet (2003), Wiley-VCH: Wiley-VCH Wheinheim · Zbl 1044.90002
[11] Box, G. E.P.; Jenkins, G. M., Time Series Analysis, Forecasting and Control (1970), Holden-Day: Holden-Day San Francisco · Zbl 0249.62009
[12] Casañola-Martin, G. M.; Marrero-Ponce, Y.; Khan, M. T.; Khan, S. B.; Torrens, F.; Pérez-Jiménez, F.; Rescigno, A.; Abad, C., Bond-based 2D quadratic fingerprints in QSAR studies: virtual and in vitro tyrosinase inhibitory activity elucidation, Chem. Biol. Drug Des., 76, 538-545 (2010)
[13] Chen, L.; Huang, T.; Shi, X. H.; Cai, Y. D.; Chou, K. C., Analysis of protein pathway networks using hybrid properties, Molecules, 15, 8177-8192 (2010)
[14] Chen, L.; Feng, K. Y.; Cai, Y. D.; Chou, K. C.; Li, H. P., Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition, BMC Bioinf., 11, 293 (2010)
[15] Chou, K. C., Graphic rules in steady and non-steady enzyme kinetics, J. Biol. Chem, 264, 12074-12079 (1989)
[16] Chou, K. C., Review: applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems, Biophys. Chem, 35, 1-24 (1990)
[17] Chou, K. C., Prediction of protein cellular attributes using pseudo amino acid composition, Proteins: Struct. Funct. Genet, 43, 246-255 (2001), (Erratum: ibid, 2001, Vol. 44, 60)
[18] Chou, K. C., Graphic rule for drug metabolism systems, Curr. Drug Metab, 11, 369-378 (2010)
[19] Chou, K. C., Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review), J. Theor. Biol, 273, 236-247 (2011) · Zbl 1405.92212
[20] Chou, K. C.; Forsen, S., Graphical rules for enzyme-catalyzed rate laws, Biochem. J., 187, 829-835 (1980)
[21] Chou, K. C.; Shen, H. B., Review: recent advances in developing web-servers for predicting protein attributes, Nat. Sci, 2, 63-92 (2009)
[22] Chou, K. C.; Zhang, C. T., Review: prediction of protein structural classes, Crit. Rev. Biochem. Mol. Biol., 30, 275-349 (1995)
[23] Chou, K. C.; Zhang, C. T.; Maggiora, G. M., Disposition of amphiphilic helices in heteropolar environments, Proteins, 28, 99-108 (1997)
[24] Chou, K. C.; Lin, W. Z.; Xiao, X., Wenxiang: a web-server for drawing wenxiang diagrams, Nat. Sci, 3, 862-865 (2011)
[25] Concu, R.; Dea-Ayuela, M. A.; Pérez-Montoto, L. G.; Bolás-Fernández, F.; Prado-Prado, F. J.; Podda, G.; Uriarte, E.; Ubeira, F. M.; González-Díaz, H., Prediction of enzyme classes from 3D structure: a general model and examples of experimental-theoretic scoring of peptide mass fingerprints of Leishmania proteins, J. Proteome Res., 8, 4372-4382 (2009)
[26] Concu, R.; Podda, G.; Uriarte, E.; González-Díaz, H., Computational chemistry study of 3D-structure-function relationships for enzymes based on Markov models for protein electrostatic, HINT, and van der Waals potentials, J. Comput. Chem, 30, 1510-1520 (2009)
[27] Cruz-Monteagudo, M.; Munteanu, C. R.; Borges, F.; Natália, M.; Cordeiro, D. S.; Uriarte, E.; Chou, K. C.; González-Díaz, H., Stochastic molecular descriptors for polymers. 4. Study of complex mixtures with topological indices of mass spectra spiral and star networks: the blood proteome case, Polymer, 49, 5575-5587 (2008)
[28] De Nooy, W.; Mrvar, A.; Batagelj, V., Exploratory Social Network Analysis with Pajek (2005), Cambridge University Press: Cambridge University Press Cambridge
[29] Dehmer, M.; Emmert-Streib, F., Analysis of Complex Networks: From Biology to Linguistics (2009), Wiley-VCH: Wiley-VCH Wheinheim · Zbl 1228.94003
[30] D. Eppstein, J. Y. Wang, A Steady State Model for Graph Power Laws, ACM Computing Research Repository, Second International Workshop on Web Dynamics, May, 2002.; D. Eppstein, J. Y. Wang, A Steady State Model for Graph Power Laws, ACM Computing Research Repository, Second International Workshop on Web Dynamics, May, 2002.
[31] Erdös, P.; Rényi, A., On random graphs I, Publ. Math. Debrecen, 6, 290-297 (1959) · Zbl 0092.15705
[32] Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M. T.D.; McDowell, R. M., Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regressionbased QSARs, Environ. Health Perspect., 111, 1361-1375 (2003)
[33] Esmaeili, M.; Mohabatkar, H.; Mohsenzadeh, S., Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses, J. Theor. Biol, 263, 203-209 (2010) · Zbl 1406.92455
[34] Estrada, E.; Molina, E., 3D connectivity indices in QSPR/QSAR studies, J. Chem. Inf. Comput. Sci., 41, 791-797 (2001)
[35] Freeman, L. C., A set of measures of centrality based upon betweenness, Sociometry, 40, 35-41 (1977)
[36] González-Díaz, H.; Munteanu, C. R., Topological Indices for Medicinal Chemistry, Biology, Parasitology, Neurological and Social Networks (2010), Transworld Research Network: Transworld Research Network Kerala, India
[37] González-Díaz, H.; Romarís, F.; Duardo-Sánchez, A.; Pérez-Montoto, L. G.; Prado-Prado, F.; Patlewicz, G.; Ubeira, F. M., Predicting drugs and proteins in parasite infections with topological indices of complex networks: theoretical backgrounds, applications, and legal issues, Curr. Pharm. Des, 16, 2737-2764 (2010)
[38] González-Díaz, H.; Mezo, M.; González-Warleta, M.; Muíño-Pose, L.; Paniagua, E.; Ubeira, F. M., Network prediction of fasciolosis spreading in Galicia (NW Spain), (González-Díaz, H.; Munteanu, C. R., Topological Indices for Medicinal Chemistry, Biology, Parasitology, Neurological and Social Networks (2010), Transworld Research Network: Transworld Research Network Kerala, India), 191-204
[39] Gozalbes, R.; Doucet, J. P.; Derouin, F., Application of topological descriptors in QSAR and drug design: history and new trends, Curr. Drug Targets Infect. Disord, 2, 93-102 (2002)
[40] Gramatica, P., Principles of QSAR models validation: internal and external, QSAR Comb. Sci., 26, 694-701 (2007)
[41] Hahn, M. W.; Kern, A. D., Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks, Mol. Biol. Evol, 22, 803-806 (2005)
[42] Hamming, R. W., Error detecting and error correcting codes, Bell Syst. Technol. J., 29, 147-160 (1950) · Zbl 1402.94084
[43] He, Z.; Zhang, J.; Shi, X. H.; Hu, L. L.; Kong, X.; Cai, Y. D.; Chou, K. C., Predicting drug-target interaction networks based on functional groups and biological features, PLoS One, 5, e9603 (2010)
[44] Hill, T.; Lewicki, P., Statistics: Methods and Applications: a Comprehensive Reference for Science (2006), Industry, and Data Mining, StatSoft: Industry, and Data Mining, StatSoft Tulsa
[45] Honey, C. J.; Kotter, R.; Breakspear, M.; Sporns, O., Network structure of cerebral cortex shapes functional connectivity on multiple time scales, Proc. Nat. Acad. Sci. U.S.A, 104, 10240-10245 (2007)
[46] Hu, L.; Huang, T.; Shi, X.; Lu, W. C.; Cai, Y. D.; Chou, K. C., Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties, PLoS One, 6, e14556 (2011)
[47] Hu, L. L.; Huang, T.; Cai, Y. D.; Chou, K. C., Prediction of body fluids where proteins are secreted into based on protein interaction network, PLoS One, 6, e22989 (2011)
[48] Hu, L. L.; Feng, K. Y.; Cai, Y. D.; Chou, K. C., Using protein-protein interaction network information to predict the subcellular locations of proteins in budding yeast, Protein Pept. Lett, 19, 644-651 (2012)
[49] Huang, T.; Shi, X. H.; Wang, P.; He, Z.; Feng, K. Y.; Hu, L.; Kong, X.; Li, Y. X.; Cai, Y. D.; Chou, K. C., Analysis and prediction of the metabolic stability of proteins based on their sequential features, subcellular locations and interaction networks, PLoS One, 5, e10972 (2010)
[50] Huang, T.; Zhang, J.; Xu, Z. P.; Hu, L. L.; Chen, L.; Shao, J. L.; Zhang, L.; Kong, X. Y.; Cai, Y. D.; Chou, K. C., Deciphering the effects of gene deletion on yeast longevity using network and machine learning approaches, Biochimie, 94, 1017-1025 (2012)
[51] Huang, T.; Wang, J.; Cai, Y. D.; Yu, H.; Chou, K. C., Hepatitis C virus network based classification of hepatocellular cirrhosis and carcinoma, PLoS One, 7, e34460 (2012)
[52] Hurtrez-Boussès, S.; Durand, P.; Jabbour-Zahab, R.; Guégan, J. F.; Meunier, C.; Bargues, M. D.; Mas-Coma, S.; Renaud, F., Isolation and characterization of microsatellite markers in the liver fluke (Fasciola hepatica), Mol. Ecol. Notes, 4, 689-690 (2004)
[53] Jiang, Y.; Huang, T.; Chen, L.; Gao, Y. F.; Cai, Y.; Chou, K. C., Signal propagation in protein interaction network during colorectal cancer progression, Biomed. Res. Int., 2013, 287011-287019 (2013)
[54] Junker, B. H.; Koschützki, D.; Schreiber, F., Exploration of biological network centralities with CentiBiN, BMC Bioinf., 7, 219 (2006), (Available from)
[55] Katritzky, A. R.; Gordeeva, E. V., Traditional topological indices vs electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research, J. Chem. Inf. Comput. Sci., 33, 835-857 (1993)
[56] Khosravian, M.; Faramarzi, F. K.; Beigi, M. M.; Behbahani, M.; Mohabatkar, H., Predicting antibacterial peptides by the concept of Chou’s pseudo-amino acid composition and machine learning methods, Protein Pept. Lett, 20, 180-186 (2013)
[57] Kleinberg, J. M., Navigation in a small world, Nature, 406, 845 (2000)
[58] Li, B. Q.; Huang, T.; Liu, L.; Cai, Y. D.; Chou, K. C., Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network, PLoS One, 7, e33393 (2012)
[59] Liljeros, F.; Edling, C. R.; Nunes Amaral, L. A., Sexual networks: implications for the transmission of sexually transmitted infections, Microbe. Infect, 5, 189-196 (2003)
[60] Lin, S. X.; Lapointe, J., Theoretical and experimental biology in one, J. Biomed. Sci. Eng., 6, 435-442 (2013)
[61] Liu, F.; Liang, Y.; Cao, C.; Zhou, N., QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological índices, Talanta, 72, 1307-1315 (2007)
[62] Marrero-Ponce, Y.; Khan, M. T.; Casañola Martín, G. M.; Ather, A.; Sultankhodzhaev, M. N.; Torrens, F.; Rotondo, R., Prediction of tyrosinase inhibition activity using atom-based bilinear índices, ChemMedChem, 2, 449-478 (2007)
[63] Marrero-Ponce, Y.; Santiago, O. M.; López, Y. M.; Barigye, S. J.; Torrens, F., Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application, J. Comput. Aided Mol. Des., 26, 1229-1246 (2012)
[64] Mas-Coma, S., Epidemiology of fascioliasis in human endemic areas, J. Helminthol, 79, 207-216 (2005)
[65] McDonald, D. B., Predicting fate from early connectivity in a social network, Proc. Nat. Acad. Sci. U.S.A, 104, 10910-10914 (2007)
[66] Mezo, M.; González-Warleta, M.; Castro-Hermida, J. A.; Ubeira, F. M., Evaluation of the flukicide treatment policy for dairy cattle in Galicia (NW Spain), Vet. Parasitol, 157, 235-243 (2008)
[67] Mitchell, G. B.; Maris, L.; Bonniwell, M. A., Triclabendazole-resistant liver fluke in Scottish sheep, Vet. Rec., 143, 399 (1998)
[68] Mohabatkar, H., Prediction of cyclin proteins using Chou’s pseudo amino acid composition, Protein Pept. Lett, 17, 1207-1214 (2010)
[69] Mohabatkar, H.; Beigi, M. M.; Abdolahi, K.; Mohsenzadeh, S., Prediction of allergenic proteins by means of the concept of Chou’s pseudo amino acid composition and a machine learning approach, Med. Chem. (Los Angeles), 9, 133-137 (2013)
[70] Moll, L.; Gaasenbeek, C. P.H.; Vellema, P.; Borgsteede, F. H.M., Resistance of Fasciola hepatica against triclabendazole in cattle and sheep in The Netherlands, Vet. Parasitol., 91, 153-158 (2000)
[71] Mooney, L.; Good, B.; Hanrahan, J. P.; Mulcahy, G.; de Waal, T., The comparative efficacy of four anthelmintics against a natural acquired Fasciola hepatica infection in hill sheep flock in the west of Ireland, Vet. Parasitol, 164, 201-205 (2009)
[72] Newman, M., The structure and function of complex networks, SIAM Rev. Soc. Ind. Appl. Math, 45, 167-256 (2003) · Zbl 1029.68010
[73] Oberg, T., A QSAR for baseline toxicity: validation, domain of application, and prediction, Chem. Res. Toxicol., 17, 1630-1637 (2004)
[74] Olaechea, F.; Lovera, V.; Larroza, M.; Raffo, F.; Cabrera, R., Resistance of Fasciola hepatica against triclabendazole in cattle in Patagonia (Argentina), Vet. Parasitol., 178, 364-366 (2011)
[75] Overend, D. J.; Bowen, F. L., Resistance of Fasciola hepatica to triclabendazole, Aust. Vet. J., 72, 275-276 (1995)
[76] Porter, M. A.; Mucha, P. J.; Newman, M. E.; Warmbrand, C. M., A network analysis of committees in the U.S. House of Representatives, Proc. Nat. Acad. Sci. U.S.A, 102, 7057-7062 (2005)
[77] Prado-Prado, F. J.; Martinez de la Vega, O.; Uriarte, E.; Ubeira, F. M.; Chou, K. C.; González-Díaz, H., Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks, Bioorg. Med. Chem, 17, 569-575 (2009)
[78] Puzyn, T.; Leszczynski, J.; Cronin, M. T.D., Recent Advances in QSAR Studies: Methods and Applications (2010), Springer
[79] Riera-Fernández, P.; Munteanu, C. R.; Escobar, M.; Prado-Prado, F.; Martín-Romalde, R.; Pereira, D.; Villalba, K.; Duardo-Sánchez, A.; González-Díaz, H., New Markov-Shannon entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, parasite-host, neural, industry, and legal-social networks, J. Theor. Biol., 293, 174-188 (2012)
[80] Roy, K.; Ghosh, G., Exploring QSARs with extended topochemical atom (ETA) indices for modeling chemical and drug toxicity, Curr. Pharm. Des, 16, 2625-2639 (2010)
[81] Roy, K.; Sanyal, I.; Roy, P. P., QSPR of the bioconcentration factors of non-ionic organic compounds in fish using extended topochemical atom (ETA) índices, SAR QSAR Environ. Res, 17, 563-582 (2006)
[82] Sabidussi, G., The centrality index of a graph, Psychometrika, 31, 581-603 (1966) · Zbl 0152.22703
[83] Sahu, S. S.; Panda, G., A novel feature representation method based on Chou’s pseudo amino acid composition for protein structural class prediction, Comput. Biol. Chem., 34, 320-327 (2010) · Zbl 1403.92221
[84] Speck-Planche, A.; Kleandrova, V. V.; Luan, F.; Cordeiro, M. N., Rational drug design for anti-cancer chemotherapy: multi-target QSAR models for the in silico discovery of anti-colorectal cancer agents, Bioorg. Med. Chem, 20, 4848-4855 (2012)
[85] Speck-Planche, A.; Kleandrova, V. V.; Luan, F.; Cordeiro, M. N., A ligand-based approach for the in silico discovery of multi-target inhibitors for proteins associated with HIV infection, Mol. Biosyst, 8, 2188-2196 (2012)
[86] StatSoft.Inc., 2002. STATISTICA (data analysis software system), version 6.0. 〈www.statsoft.com.Statsoft〉; StatSoft.Inc., 2002. STATISTICA (data analysis software system), version 6.0. 〈www.statsoft.com.Statsoft〉
[87] Todeschini, R.; Consonni, V., Handbook of Molecular Descriptors (2002), Wiley-VCH: Wiley-VCH Wheinheim
[88] Vázquez, D. P.; Pouling, R.; Krasnov, B. R.; Shenbrot, G. I., Species abundance and the distribution of specialization in host-parasite interaction networks, J. Anim. Ecol., 74, 946-955 (2005)
[89] Vázquez-Prieto, S.; Vilas, R.; Mezo, M.; González-Warleta, M.; Ubeira, F. M.; Paniagua, E., Allozyme markers suitable for population genetic analysis of Fasciola hepatica, Vet. Parasitol, 176, 84-88 (2011)
[90] Vilas, R.; Vázquez-Prieto, S.; Paniagua, E., Contrasting patterns of population genetic structure of Fasciola hepatica from cattle and sheep: implications for the evolution of anthelmintic resistance, Infect. Genet. Evol, 12, 45-52 (2012)
[91] Wu, Z. C.; Xiao, X.; Chou, K. C., 2D-MH: a web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids, J. Theor. Biol, 267, 29-34 (2010) · Zbl 1410.92089
[92] Xie, G.; Mo, Z., Three 3D graphical representations of DNA primary sequences based on the classifications of DNA bases and their applications, J. Theor. Biol, 269, 123-130 (2011) · Zbl 1307.92311
[93] Xu, J.; Liu, L.; Xu, W.; Zhao, S.; Zuo, D., A general QSPR model for the prediction of theta (lower critical solution temperature) in polymer solutions with topological índices, J. Mol. Graph. Model, 26, 352-359 (2007)
[94] Yang, C.; Zhong, C., Modified connectivity indices and their application to QSPR study, J. Chem. Inf. Comput. Sci., 43, 1998-2004 (2003)
[95] Zhang, S. W.; Zhang, Y. L.; Yang, H. F.; Zhao, C. H.; Pan, Q., Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies, Amino Acids, 34, 565-572 (2008)
[96] Zhou, G. P., The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase I alpha and its interaction with the myosin binding subunit of the myosin light chains phosphase, Protein Pept. Lett, 18, 966-978 (2011)
[97] Zhou, G. P., The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism, J. Theor. Biol, 284, 142-148 (2011) · Zbl 1397.92245
[98] Zhou, G. P.; Deng, M. H., An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways, Biochem. J, 222, 169-176 (1984)
[99] Zhou, G. P.; Huang RB, R. B., The pH-triggered conversion of the PrP(c) to PrP(sc.), Curr. Top. Med. Chem., 13, 1152-1163 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.