×

Coexistence of stochastic oscillations and self-organized criticality in a neuronal network: sandpile model application. (English) Zbl 1472.92040

Summary: Self-organized criticality (SOC) and stochastic oscillations (SOs) are two theoretically contradictory phenomena that are suggested to coexist in the brain. Recently it has been shown that an accumulation-release process like sandpile dynamics can generate SOC and SOs simultaneously. We considered the effect of the network structure on this coexistence and showed that the sandpile dynamics on a small-world network can produce two power law regimes along with two groups of SOs – two peaks in the power spectrum of the generated signal simultaneously. We also showed that external stimuli in the sandpile dynamics do not affect the coexistence of SOC and SOs but increase the frequency of SOs, which is consistent with our knowledge of the brain.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbott, L. F. (1999). Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Research Bulletin, 50(5), 303-304. ,
[2] Bak, P. (1996). How nature works: The science of self-organized criticality. Nature, 383(6603), 772-773. · Zbl 0894.00007
[3] Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59(4), 381. ,
[4] Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Physical Review A, 38(1), 364. , · Zbl 1230.37103
[5] Bassett, D. S., & Bullmore, E. D. (2006). Small-world brain networks. Neuroscientist, 12(6), 512-523. ,
[6] Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23(35), 11167-11177. ,
[7] Beggs, J. M., & Timme, N. (2012). Being critical of criticality in the brain. Frontiers in Physiology, 3, 163. ,
[8] Benayoun, M., Cowan, J. D., van Drongelen, W., & Wallace, E. (2010). Avalanches in a stochastic model of spiking neurons. PLoS Comput. Biol., 6(7), e1000846. ,
[9] Bhaumik, H., & Santra, S. B. (2013). Critical properties of a dissipative sandpile model on small-world networks. Physical Review E, 88(6), 062817. ,
[10] Bhaumik, H., & Santra, S. B. (2016). Dissipative stochastic sandpile model on small-world networks: Properties of nondissipative and dissipative avalanches. Physical Review E, 94(6), 062138. ,
[11] Boffetta, G., Carbone, V., Giuliani, P., Veltri, P., & Vulpiani, A. (1999). Power laws in solar flares: Self-organized criticality or turbulence?Physical Review Letters, 83(22), 4662. ,
[12] Bressler, S. L., & Kelso, J. S. (2001). Cortical coordination dynamics and cognition. Trends in Cognitive Sciences, 5(1), 26-36. ,
[13] Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn hypothesis in neuroscience. Brain, 125(5), 935-951. ,
[14] Buzsáki, G. (2006). Rhythms of the brain.New York: Oxford University Press. , · Zbl 1204.92017
[15] Buzsáki, G., & Watson, B. O. (2012). Brain rhythms and neural syntax: Implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin. Neurosci., 14(4), 345-367.
[16] Canolty, R. T., Cadieu, C. F., Koepsell, K., Knight, R. T., & Carmena, J. M. (2012). Multivariate phase-amplitude cross-frequency coupling in neurophysiological signals. IEEE Transactions on Biomedical Engineering, 59(1), 8-11. ,
[17] Chen, C. C., Chiao, L. Y., Lee, Y. T., Cheng, H. W., & Wu, Y. M. (2008). Long-range connective sandpile models and its implication to seismicity evolution. Tectonophysics, 454(1), 104-107. ,
[18] Clar, S., Drossel, B., & Schwabl, F. (1996). Forest fires and other examples of self-organized criticality. Journal of Physics: Condensed Matter, 8(37), 6803. ,
[19] Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661-703. , · Zbl 1176.62001
[20] Csicsvari, J., Jamieson, B., Wise, K. D., & Buzsáki, G. (2003). Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron, 37(2), 311-322. ,
[21] Dayan, P., & Abbott, L. F. (2003). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Journal of Cognitive Neuroscience, 15(1), 154-155.
[22] De Arcangelis, L., & Herrmann, H. J. (2002). Self-organized criticality on small world networks. Physica A: Statistical Mechanics and Its Applications, 308(1), 545-549. , · Zbl 0995.82013
[23] Dehmer, M., Mowshowitz, A., & Emmert-Streib, F. (Eds.). (2013). Advances in network complexity. Hoboken, NJ: Wiley. , · Zbl 1269.00010
[24] Dhar, D. (1999). Studying self-organized criticality with exactly solved models. arXiv:cond-mat/9909009.
[25] Dickman, R., Muñoz, M. A., Vespignani, A., & Zapperi, S. (2000). Paths to self-organized criticality. Brazilian Journal of Physics, 30(1), 27-41. ,
[26] Drossel, B., & Schwabl, F. (1992). Self-organized criticality in a forest-fire model. Physica A: Statistical Mechanics and Its Applications, 191(1-4), 47-50. ,
[27] Friedman, N., Ito, S., Brinkman, B. A., Shimono, M., DeVille, R. L., Dahmen, K. A., … Butler, T. C. (2012). Universal critical dynamics in high resolution neuronal avalanche data. Physical Review Letters, 108 (20), 208102. ,
[28] Gireesh, E. D., & Plenz, D. (2008). Neuronal avalanches organize as nested theta-and beta/gamma-oscillations during development of cortical layer 2/3. Proceedings of the National Academy of Sciences, 105(21), 7576-7581. ,
[29] Goldenfeld, N. (1992). Lectures on phase transitions and the renormalization group. Boulder, CO: Westview Press. · Zbl 0825.76872
[30] Harris, T. E. (2002). The theory of branching processes. Courier Corporation. · Zbl 1037.60001
[31] Hilgetag, C. C., & Kaiser, M. (2004). Clustered organization of cortical connectivity. Neuroinformatics, 2(3), 353-360. ,
[32] Hoore, M., & Moghimi-Araghi, S. (2013). Critical behavior of a small-world sandpile model. Journal of Physics A: Mathematical and Theoretical, 46(19), 195001. ,
[33] Jensen, O., & Colgin, L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences, 11(7), 267-269. ,
[34] Jirsa, V. K., & Kelso, J. S. (2000). Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Physical Review E, 62(6), 8462. ,
[35] Kadanoff, L. P., Nagel, S. R., Wu, L., & Zhou, S. M. (1989). Scaling and universality in avalanches. Physical Review A, 39(12), 6524. ,
[36] Kirschfeld, K. (2005). The physical basis of alpha waves in the electroencephalogram and the origin of the “Berger effect.”Biological Cybernetics, 92(3), 177-185. , · Zbl 1101.92013
[37] Koepp, M. J., & Woermann, F. G. (2005). Imaging structure and function in refractory focal epilepsy. Lancet Neurology, 4(1), 42-53. ,
[38] Kramer, M. A., Eden, U. T., Kolaczyk, E. D., Zepeda, R., Eskandar, E. N., & Cash, S. S. (2010). Coalescence and fragmentation of cortical networks during focal seizures. Journal of Neuroscience, 30(30), 10076-10085. ,
[39] Ktitarev, D. V., Lübeck, S., Grassberger, P., & Priezzhev, V. B. (2000). Scaling of waves in the Bak-Tang-Wiesenfeld sandpile model. Physical Review E, 61(1), 81. ,
[40] Lisman, J. (2005). The theta/gamma discrete phase code occurring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus, 15(7), 913-922. ,
[41] Lübeck, S., & Usadel, K. D. (1997). Numerical determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model. Physical Review E, 55(4), 4095. ,
[42] Malamud, B. D., Morein, G., & Turcotte, D. L. (1998). Forest fires: An example of self-organized critical behavior. Science, 281(5384), 1840-1842. ,
[43] Marshall, N., Timme, N. M., Bennett, N., Ripp, M., Lautzenhiser, E., & Beggs, J. M. (2016). Analysis of power laws, shape collapses, and neural complexity: New techniques and Matlab support via the NCC toolbox. Frontiers in Physiology, 7. ,
[44] Meisel, C., Storch, A., Hallmeyer-Elgner, S., Bullmore, E., & Gross, T. (2012). Failure of adaptive self-organized criticality during epileptic seizure attacks. PLoS Comput. Biol., 8(1), e1002312. ,
[45] Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120(4), 701-722. ,
[46] Nishimori, H., & Ortiz, G. (2010). Elements of phase transitions and critical phenomena.Oxford: Oxford University Press. , · Zbl 1276.82001
[47] Paczuski, M., Maslov, S., & Bak, P. (1996). Avalanche dynamics in evolution, growth, and depinning models. Physical Review E, 53(1), 414. ,
[48] Pinho, S. T. R., Prado, C. P. C., & Salinas, S. R. (1997). Complex behavior in one-dimensional sandpile models. Physical Review E, 55(3), 2159. ,
[49] Ponten, S. C., Bartolomei, F., & Stam, C. J. (2007). Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clinical Neurophysiology, 118(4), 918-927. ,
[50] Priesemann, V., Wibral, M., Valderrama, M., Pröpper, R., Le Van Quyen, M., Geisel, T., … Munk, M. H. (2014). Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Frontiers in Systems Neuroscience, 8. ,
[51] Pruessner, G. (2012). Self-organised criticality: Theory, models and characterisation. Cambridge: Cambridge University Press. ,
[52] Reijneveld, J. C., Ponten, S. C., Berendse, H. W., & Stam, C. J. (2007). The application of graph theoretical analysis to complex networks in the brain. Clinical Neurophysiology, 118(11), 2317-2331. ,
[53] Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059-1069. ,
[54] Ruelle, P., & Sen, S. (1992). Toppling distributions in one-dimensional Abelian sandpiles. Journal of Physics A: Mathematical and General, 25(22), L1257. , · Zbl 0775.60003
[55] Schindler, K. A., Bialonski, S., Horstmann, M. T., Elger, C. E., & Lehnertz, K. (2008). Evolving functional network properties and synchronizability during human epileptic seizures. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(3), 033119. ,
[56] Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1), 9-18. ,
[57] Schuster, H. G. (2014). Criticality in neural systems. D. Plenz, & E. Niebur (Eds.). Hoboken, NJ: Wiley. · Zbl 1286.92008
[58] Sporns, O. (2004). Complex neural dynamics. In V. K. Jirsa & J. A. S. Kelso (Eds.), Coordination Dynamics: Issues and Trends (pp. 197-215). Berlin: Springer. ,
[59] Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418-425. ,
[60] Sporns, O., & Tononi, G. (2001). Classes of network connectivity and dynamics. Complexity, 7(1), 28-38. ,
[61] Stam, C. J., & Reijneveld, J. C. (2007). Graph theoretical analysis of complex networks in the brain. Nonlinear Biomedical Physics, 1(1), 3. ,
[62] Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17(1), 92-99. ,
[63] Stanley, H. E. (1999). Scaling, universality, and renormalization: Three pillars of modern critical phenomena. Reviews of Modern Physics, 71(2), S358. ,
[64] Steriade, M. (2001). Impact of network activities on neuronal properties in corticothalamic systems. Journal of Neurophysiology, 86(1), 1-39. ,
[65] Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137(4), 1087-1106. ,
[66] Tort, A. B., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta-gamma coupling increases during the learning of item-context associations. Proceedings of the National Academy of Sciences, 106(49), 20942-20947. ,
[67] Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229-239. ,
[68] Wang, S. J., Ouyang, G., Guang, J., Zhang, M., Wong, K. M., & Zhou, C. (2016). Stochastic oscillation in self-organized critical states of small systems: Sensitive resting state in neural systems. Physical Review Letters, 116(1), 018101. ,
[69] Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440-442. , · Zbl 1368.05139
[70] Yeomans, J. M. (1992). Statistical mechanics of phase transitions. Gloucestershire: Clarendon Press.
[71] Zarepour, M., Niry, M. D., & Valizadeh, A. (2015). Functional scale-free networks in the two-dimensional Abelian sandpile model. Physical Review E, 92(1), 012822. ,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.