zbMATH — the first resource for mathematics

Numerical investigation of microscale dynamic contact angles of the CO\(_2\)-water-silica system using coarse-grained molecular approach. (English) Zbl 07262512
Summary: The dynamic contact angle of a gas-liquid-solid system depends on the contact line velocity and ignoring this effect could lead to inaccurate estimations of the capillary pressures in microporous media. While most existing coarse-grained molecular dynamics (CGMD) models use one particle to represent a few molecules, we present a novel CGMD framework to model microscale CO\(_2\)/water flows in silica with each particle representing hundreds of thousands of molecules. The framework can reproduce the densities and viscosities of water and CO\(_2\), water-CO\(_2\) interfacial tension, and static contact angle over a wide range of pressures. The validated framework is applied to study the velocity-dependency of contact angle of the microscale CO\(_2\)-water-silica system. The results indicate that the assumption in the molecular kinetic theory that liquid-solid interaction is similar to the reversible work of adhesion between liquid and solid may not hold for CO\(_2\)-water-silica systems.
76T30 Three or more component flows
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
74A25 Molecular, statistical, and kinetic theories in solid mechanics
82B24 Interface problems; diffusion-limited aggregation arising in equilibrium statistical mechanics
Full Text: DOI
[1] Chukwudeme, E.; Hamouda, A., Enhanced oil recovery (EOR) by miscible CO2 and water flooding of asphaltenic and non-asphaltenic oils, Energies, 2, 3, 714-737 (2009)
[2] Middleton, RS; Carey, JW; Currier, RP; Hyman, JD; Kang, Q.; Karra, S.; Jiménez-Martínez, J.; Porter, ML; Viswanathan, HS, Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2, Appl Energy, 147, 500-509 (2015)
[3] Koh, DY; Kang, H.; Kim, DO; Park, J.; Cha, M.; Lee, H., Recovery of methane from gas hydrates intercalated within natural sediments using CO_2 and a CO_2/N_2 gas mixture, Chemsuschem, 5, 8, 1443-1448 (2012)
[4] Jung, J-W; Wan, J., Supercritical CO_2 and ionic strength effects on wettability of silica surfaces: equilibrium contact angle measurements, Energy Fuels, 26, 9, 6053-6059 (2012)
[5] Sarmadivaleh, M.; Al-Yaseri, AZ; Iglauer, S., Influence of temperature and pressure on quartz-water-CO_2 contact angle and CO_2-water interfacial tension, J Colloid Interface Sci, 441, 59-64 (2015)
[6] Espinoza, DN; Santamarina, JC, Water-CO_2-mineral systems: interfacial tension, contact angle, and diffusion—implications to CO_2 geological storage, Water Resour Res, 46, 7, W07537 (2010)
[7] Chen, C.; Dong, B.; Zhang, N.; Li, W.; Song, Y., Pressure and temperature dependence of contact angles for CO_2/water/silica systems predicted by molecular dynamics simulations, Energy Fuels, 30, 6, 5027-5034 (2016)
[8] Iglauer, S.; Mathew, M.; Bresme, F., Molecular dynamics computations of brine-CO_2 interfacial tensions and brine-CO_2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration, J Colloid Interface Sci, 386, 1, 405-414 (2012)
[9] Javanbakht, G.; Sedghi, M.; Welch, W.; Goual, L., Molecular dynamics simulations of CO_2/water/quartz interfacial properties: impact of CO_2 dissolution in water, Langmuir, 31, 21, 5812-5819 (2015)
[10] Chen, C.; Zhang, N.; Li, W.; Song, Y., Water contact angle dependence with hydroxyl functional groups on silica surfaces under CO_2 sequestration conditions, Environ Sci Technol, 49, 24, 14680-14687 (2015)
[11] Iglauer, S.; Salamah, A.; Sarmadivaleh, M.; Liu, K.; Phan, C., Contamination of silica surfaces: impact on water-CO_2-quartz and glass contact angle measurements, Int J Greenhouse Gas Control, 22, 325-328 (2014)
[12] Huang, P.; Shen, L.; Gan, Y.; Maggi, F.; El-Zein, A.; Pan, Z., Atomistic study of dynamic contact angles in CO_2-water-silica system, Langmuir, 35, 15, 5324-5332 (2019)
[13] Friedman, SP, Dynamic contact angle explanation of flow rate-dependent saturation-pressure relationships during transient liquid flow in unsaturated porous media, J Adhes Sci Technol, 13, 12, 1495-1518 (1999)
[14] Liu, H.; Ju, Y.; Wang, N.; Xi, G.; Zhang, Y., Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference, Phys Rev E, 92, 3, 033306 (2015)
[15] Li, L.; Shen, L.; Nguyen, GD; El-Zein, A.; Maggi, F., A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale, Comput Mech, 62, 5, 1071-1085 (2018) · Zbl 06981050
[16] Bao, Y.; Li, L.; Shen, L.; Lei, C.; Gan, Y., Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis, Acta Mech Sin, 35, 3, 472-485 (2019)
[17] Shadloo, M.; Zainali, A.; Yildiz, M., Simulation of single mode Rayleigh-Taylor instability by SPH method, Comput Mech, 51, 5, 699-715 (2013) · Zbl 1308.76130
[18] Saha, AA; Mitra, SK, Effect of dynamic contact angle in a volume of fluid (VOF) model for a microfluidic capillary flow, J Colloid Interface Sci, 339, 2, 461-480 (2009)
[19] Li, S.; Fan, H., On multiscale moving contact line theory, Proc R Soc A, 471, 2179, 20150224 (2015) · Zbl 1371.76154
[20] Minaki, H.; Li, S., Multiscale modeling and simulation of dynamic wetting, Comput Methods Appl Mech Eng, 273, 273-302 (2014) · Zbl 1296.76085
[21] Cook, BK; Noble, DR; Williams, JR, A direct simulation method for particle-fluid systems, Eng Comput, 21, 2-4, 151-168 (2004) · Zbl 1062.76553
[22] Jing, L.; Kwok, C.; Leung, Y.; Sobral, Y., Extended CFD-DEM for free-surface flow with multi-size granules, Int J Numer Anal Methods Geomech, 40, 1, 62-79 (2016)
[23] Das, R.; Cleary, PW, Evaluation of accuracy and stability of the classical SPH method under uniaxial compression, J Sci Comput, 64, 3, 858-897 (2015) · Zbl 06499235
[24] Avendano, C.; Lafitte, T.; Galindo, A.; Adjiman, CS; Jackson, G.; Müller, EA, SAFT-γ force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide, J Phys Chem B, 115, 38, 11154-11169 (2011)
[25] Lobanova, O.; Avendaño, C.; Lafitte, T.; Müller, EA; Jackson, G., SAFT-γ force field for the simulation of molecular fluids: 4. A single-site coarse-grained model of water applicable over a wide temperature range, Mol Phys, 113, 9-10, 1228-1249 (2015)
[26] Marrink, SJ; De Vries, AH; Mark, AE, Coarse grained model for semiquantitative lipid simulations, J Phys Chem B, 108, 2, 750-760 (2004)
[27] Chiu, S-W; Scott, HL; Jakobsson, E., A coarse-grained model based on Morse potential for water and n-alkanes, J Chem Theory Comput, 6, 3, 851-863 (2010)
[28] Groot, RD; Warren, PB, Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation, J Chem Phys, 107, 11, 4423-4435 (1997)
[29] Warren, P., Vapor-liquid coexistence in many-body dissipative particle dynamics, Phys Rev E, 68, 6, 066702 (2003)
[30] Pagonabarraga, I.; Frenkel, D., Dissipative particle dynamics for interacting systems, J Chem Phys, 115, 11, 5015-5026 (2001)
[31] Arienti, M.; Pan, W.; Li, X.; Karniadakis, G., Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J Chem Phys, 134, 20, 204114 (2011)
[32] Kumar, A.; Asako, Y.; Abu-Nada, E.; Krafczyk, M.; Faghri, M., From dissipative particle dynamics scales to physical scales: a coarse-graining study for water flow in microchannel, Microfluid Nanofluidics, 7, 4, 467 (2009)
[33] Espanol, P.; Revenga, M., Smoothed dissipative particle dynamics, Phys Rev E, 67, 2, 026705 (2003)
[34] Ellero, M.; Español, P., Everything you always wanted to know about SDPD⋆(⋆ but were afraid to ask), Appl Math Mech, 39, 1, 103-124 (2018)
[35] Hu, XY; Adams, NA, A multi-phase SPH method for macroscopic and mesoscopic flows, J Comput Phys, 213, 2, 844-861 (2006) · Zbl 1136.76419
[36] Lei, H.; Baker, NA; Wu, L.; Schenter, GK; Mundy, CJ; Tartakovsky, AM, Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations, Phys Rev E, 94, 2, 023304 (2016)
[37] Huang, P.; Shen, L.; Gan, Y.; Nguyen, GD; El-Zein, A.; Maggi, F., Coarse-grained modeling of multiphase interactions at microscale, J Chem Phys, 149, 12, 124505 (2018)
[38] Ruckenstein, E.; Liu, H., Self-diffusion in gases and liquids, Ind Eng Chem Res, 36, 9, 3927-3936 (1997)
[39] Liu, H.; Silva, CM; Macedo, EA, New equations for tracer diffusion coefficients of solutes in supercritical and liquid solvents based on the Lennard-Jones fluid model, Ind Eng Chem Res, 36, 1, 246-252 (1997)
[40] Lemmon EW, McLinden MO, Friend DG. Thermophysical properties of fluid systems. In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899. 10.18434/t4d303
[41] Shinoda, W.; Shiga, M.; Mikami, M., Rapid estimation of elastic constants by molecular dynamics simulation under constant stress, Phys Rev B, 69, 13, 134103 (2004)
[42] Allen, MP; Tildesley, DJ, Computer simulation of liquids (1987), New York: Oxford University Press, New York
[43] Georgiadis, A.; Maitland, G.; Trusler, JM; Bismarck, A., Interfacial tension measurements of the (H_2O + CO_2) system at elevated pressures and temperatures, J Chem Eng Data, 55, 10, 4168-4175 (2010)
[44] Groot, RD; Rabone, K., Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants, Biophys J, 81, 2, 725-736 (2001)
[45] Ghoufi, A.; Malfreyt, P., Mesoscale modeling of the water liquid-vapor interface: a surface tension calculation, Phys Rev E, 83, 5, 051601 (2011)
[46] Farokhpoor, R.; Bjørkvik, BJ; Lindeberg, E.; Torsæter, O., Wettability behaviour of CO_2 at storage conditions, Int J Greenhouse Gas Control, 12, 18-25 (2013)
[47] Li, X.; Fan, X., Effect of CO2 phase on contact angle in oil-wet and water-wet pores, Int J Greenhouse Gas Control, 36, 106-113 (2015)
[48] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J Comput Phys, 117, 1, 1-19 (1995) · Zbl 0830.65120
[49] Rushton M (2014) atsim.potentials. http://atsimpotentials.readthedocs.io/en/latest/. Accessed 14 Apr 2016
[50] Frenkel, D.; Smit, B., Understanding molecular simulation: from algorithms to applications (2001), San Diego: Academic Press, San Diego
[51] Martyna, GJ; Tobias, DJ; Klein, ML, Constant pressure molecular dynamics algorithms, J Chem Phys, 101, 5, 4177-4189 (1994)
[52] Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool, Modell Simul Mater Sci Eng, 18, 1, 015012 (2009)
[53] Li, X.; Fan, X.; Askounis, A.; Wu, K.; Sefiane, K.; Koutsos, V., An experimental study on dynamic pore wettability, Chem Eng Sci, 104, 988-997 (2013)
[54] Jiang, T-S; Soo-Gun, O.; Slattery, JC, Correlation for dynamic contact angle, J Colloid Interface Sci, 69, 1, 74-77 (1979)
[55] Bachu, S.; Bennion, DB, Interfacial tension between CO_2, freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20 to 125) °C, and water salinity from (0 to 334 000) mg L − 1, J Chem Eng Data, 54, 3, 765-775 (2008)
[56] Bikkina, PK; Shoham, O.; Uppaluri, R., Equilibrated interfacial tension data of the CO_2-water system at high pressures and moderate temperatures, J Chem Eng Data, 56, 10, 3725-3733 (2011)
[57] Bikkina, PK, Contact angle measurements of CO_2-water-quartz/calcite systems in the perspective of carbon sequestration, Int J Greenhouse Gas Control, 5, 5, 1259-1271 (2011)
[58] Rohatgi A WebPlotDigitizer, Version 4.1. https://automeris.io/WebPlotDigitizer. Accessed Jan 2018
[59] Blake, T.; Haynes, J., Kinetics of liquid-liquid displacement, J Colloid Interface Sci, 30, 3, 421-423 (1969)
[60] Blake, T.; De Coninck, J., The influence of solid-liquid interactions on dynamic wetting, Adv Colloid Interface Sci, 96, 1-3, 21-36 (2002)
[61] Glasstone, S.; Laidler, K.; Eyring, H., The theory of rate processes (1941), New York: McGraw-Hill Book Co. Inc., New York
[62] Bertrand, E.; Blake, TD; De Coninck, J., Influence of solid-liquid interactions on dynamic wetting: a molecular dynamics study, J Phys: Condens Matter, 21, 46, 464124 (2009)
[63] Duvivier, D.; Blake, TD; De Coninck, J., Toward a predictive theory of wetting dynamics, Langmuir, 29, 32, 10132-10140 (2013)
[64] Müller-Plathe, F., Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids, Phys Rev E, 59, 5, 4894 (1999)
[65] Friedberg, R.; Cameron, JE, Test of the Monte Carlo method: fast simulation of a small Ising lattice, J Chem Phys, 52, 12, 6049-6058 (1970)
[66] Fincham, D.; Quirke, N.; Tildesley, D., Computer simulation of molecular liquid mixtures. I. A diatomic Lennard-Jones model mixture for CO_2/C_2H_6, J Chem Phys, 84, 8, 4535-4546 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.