×

On the first eigenvalue of the linearized operator of the \(r\)-th mean curvature of a hypersurface. (English) Zbl 0816.53031

Let \(M^ n\) be a closed submanifold in \(\mathbb{R}^{m + 1}\) and let \(H_ 1\), \(\lambda_ 1\) denote the mean curvature and the first eigenvalue of the Laplacian of \(M^ n\). R. C. Reilly proved [Comment. Math. Helv. 52, 525-533 (1977; Zbl 0382.53038)] that \({\lambda_ 1\over n} \leq {1\over \text{Vol}(M} \int_ M H^ 2_ 1\). In this paper the authors generalize this result to the first eigenvalue of the linearized operator of the higher-order curvature. Let \(A\) be the shape operator of \(M^ n\), let \(S_ r\) be the \(r\)-th elementary symmetric function of the eigenvalues of \(A\), and let \(T_ r = S_ r I - AT_{r - 1}\) with \(T_ 0 = I\). The linearized operator \(L_ r\) of \(S_{r + 1} = \left( \begin{smallmatrix} m\\ r+1\end{smallmatrix}\right) H_{r + 1}\) is defined by \(L_ r(f) = \text{div}(T_ r \nabla f)\). They prove that if \(M\) is a closed hypersurface in \(\mathbb{R}^{n + 1}\) with \(H_{r + 1} > 0\), then the first eigenvalue \(\lambda_ 1\) of \(L_ r\) satisfies \(\lambda_ 1 \int_ M H_ r \leq c(r) \int_ M H^ 2_{r + 1}\) with \(c(r) = (m - r) \left(\begin{smallmatrix} m\\r \end{smallmatrix} \right)\), and equality holds if and only if \(M\) is a sphere. Using this inequality they give some estimates on \(\lambda_ 1\). They also obtain some results on the \(r\)- stable submanifolds in \(\mathbb{R}^{m + 1}\).

MSC:

53C40 Global submanifolds
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces

Citations:

Zbl 0382.53038
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alencar, H.; do Carmo, M.; Colares, A.G.: Stable hypersurfaces with constant scalar curvature. To appear:Math. Z. 1993 · Zbl 0792.53057
[2] Barbosa, L.;do Carmo, M.: Stability of hypersurfaces with constant mean curvature.Math. Z. 195 (1984), 339-353. · Zbl 0529.53006 · doi:10.1007/BF01215045
[3] Barbosa, L.;do Carmo, M.;Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds,Math. Z. 197 (1988), 123-138. · Zbl 0653.53045 · doi:10.1007/BF01161634
[4] Bullen, P.S.;Mitrinovic, D.S.;Vasic, P.M. (Eds.):Means and Their Inequalities, Mathematics and its Applications. D. Reidel Publ. Co., Dordrecht, Holland 1988.
[5] Hardy, G.H.; Littlewood, J.E.; Pólya, G.:Inequalities. Cambridge Press 1952.
[6] Heintze, E.: Extrinsic Upper Bounds for ?1.Math. Ann. 280 (1988), 389-402. · Zbl 0628.53044 · doi:10.1007/BF01456332
[7] Hsiung, C.C.: Some integral formulas for closed hypersurfaces.Math. Scand. 2 (1954), 286-294. · Zbl 0057.14603
[8] Korevaar, N.: Sphere theorem via Alexandrov for constant Weingarten curvature hypersurfaces. Appendix to a note of A. Ros.J. Differential Geometry. 27 (1988), 221-223. · Zbl 0638.53052
[9] Montiel, S.; Ros, A.: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. In: Lawson, B.; Tenenblat, K. (Eds.):Differential Geometry, a symposium in honor of Manfredo do Carmo. Pitman Monographs, 52. Longman Scientific and Technical, Essex, 1991, 279-296.
[10] Reilly, R.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space.Comment. Math. Helv. 52 (1977), 525-533. · Zbl 0382.53038 · doi:10.1007/BF02567385
[11] Reilly, R.: Variational properties of functions of the mean curvatures for hypersurfaces in space forms.J. Differential Geom. 8 (1973), 465-477. · Zbl 0277.53030
[12] Rosenberg, H.: Hypersurfaces of Constant Curvature in Space F.Bull. Sc. Math. 117 (1993), 211-239. · Zbl 0787.53046
[13] El Soufi, A.;Ilias, S.: Une inegalite du type ?Reilly? pour les sous-varietes de l’espace hyperbolique.Comm. Math. Helv. 67 (1992), 167-181. · Zbl 0758.53029 · doi:10.1007/BF02566494
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.