×

A super accurate shifted tau method for numerical computation of the Sobolev-type differential equation with nonlocal boundary conditions. (English) Zbl 1334.35017

Summary: We propose a super accurate numerical scheme to solve the one-dimensional Sobolev type partial differential equation with an initial and two nonlocal integral boundary conditions. Our proposed methods are based on the shifted Standard and shifted Chebyshev Tau method. Firstly, We convert the model of partial differential equation to a linear algebraic equation and then we solve this system. Shifted Standard and shifted Chebyshev polynomials are applied for giving the computational results. Numerical results are presented for some problems to demonstrate the usefulness and accuracy of this approach. The method is easy to apply and produces very accurate numerical results.

MSC:

35G16 Initial-boundary value problems for linear higher-order PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cannon, J. R., The solution of the heat equation subject to the specification of energy, Q. Appl. Math., 21, 155-160 (1963) · Zbl 0173.38404
[2] Batten, J. G., Second-order correct boundary conditions for the numerical solution of the mixed boundary problem for parabolic equations, Math. Comput., 17, 405-413 (1963) · Zbl 0133.38601
[3] Mesloub, S.; Bouziani, A., On a class of singular hyperbolic equation with a weighted integral condition, Int. J. Math. Math. Sci., 22, 511-520 (1999) · Zbl 0961.35080
[4] Muravei, L. A.; Philinovskii, A. V., Non-local boundary value problems for hyperbolic equation, Matem. Zametki, 54, 98-116 (1993)
[5] Bouziani, A., Strong solution for a mixed problem with nonlocal condition for certain pluriparabolic equations, Hiroshima Math. J., 27, 3, 373-390 (1997) · Zbl 0893.35061
[6] Fairweather, G.; Saylor, R. D., The reformulation and numerical solution of certain nonclassical initial-boundary value problems, SIAM J. Sci. Stat. Comput., 12, 1, 127-144 (1991) · Zbl 0722.65062
[7] Dehghan, M., The one-dimensional heat equation subject to a boundary integral specification, Chaos Solitons Fractals, 32, 661-675 (2007) · Zbl 1139.35352
[8] Shakeri, F.; Dehghan, M., The method of lines for solution of the one-dimensional wave equation subject to an integral conservation condition, Comput. Math. Appl., 56, 2175-2188 (2008) · Zbl 1165.65384
[9] Akram, M.; Pasha, M. A., A numerical method for the heat equation with a nonlocal boundary condition, Int. J. Inf. Syst. Sci., 1, 2, 162-171 (2005) · Zbl 1084.65088
[10] Rehman, M. A.; Taj, M. S.A.; Butt, M. M., Fifth-order numerical methods for heat equation subject to a boundary integral specification, Acta Math. Univ. Comen., 79, 89-104 (2010) · Zbl 1212.65352
[11] Dubey, S. A., Numerical solution for nonlocal Sobolev-type differential equations, Electron. J. Differ. Equ. Conf., 19, 75-83 (2010) · Zbl 1200.35012
[12] Soltanalizadeh, B., Numerical analysis of the one-dimensional heat equation subject to a boundary integral specification, Opt. Commun., 284, 2109-2112 (2011)
[13] Ghehsareh, H. R.; Soltanalizadeh, B.; Abbasbandy, S., A matrix formulation to the wave equation with nonlocal boundary condition, Int. J. Comput. Math., 88, 1681-1696 (2011) · Zbl 1219.35134
[14] Soltanalizadeh, B., An approximation method based on matrix formulated algorithm for the numerical study of a biharmonic equation, Aust. J. Basic Appl. Sci., 5, 12, 501-506 (2011)
[15] Soltanalizadeh, B., Application of differential transformation method for solving a fourth-order parabolic partial differential equations, Int. J. Pure Appl. Math., 78, 3, 299-308 (2012) · Zbl 1252.35014
[16] Soltanalizadeh, B.; Yildirim, Ahmet, Application of differential transformation method for numerical computation of regularized long wave equation, Z. Naturforsch A., 67a, 160-166 (2012)
[17] Ghehsareh, H. R.; Abbasbandy, S.; Soltanalizadeh, B., Analytical solutions of the slip MHD viscous flow over a stretching sheet by using the Laplace adomian decomposition method, Z. Naturforsch. A., 67a, 248-254 (2012)
[18] Babayar, B.; Soltanalizadeh, B., Numerical solution for system of singular nonlinear volterra integro-differential equations by Newton-product method, Appl. Math. Comput., 219, 8375-8383 (2013) · Zbl 1288.65182
[19] Sobolev, S., Some new problems in mathematical physics, Izv. Akad. Nauk SSSR Ser. Mat., 18, 3-50 (1954) · Zbl 0055.08401
[20] Brill, H., A semilinear Sobolev evolution equation in Banach space, J. Differ. Equ., 24, 412-425 (1977) · Zbl 0346.34046
[21] Showalter, R. E., Existence and representation theorem for a semilinear Sobolev equation in Banach space, SIAM J. Math. Anal., 3, 527-543 (1972) · Zbl 0262.34047
[22] Balachandran, K.; Park, J. Y., Sobolev type integrodifferential equation with nonlocal condition in Banach spaces, Taiwanese J. Math., 7, 155-163 (2003) · Zbl 1032.45013
[23] Abdelfatah, B.; Nabil, M., Solution to a semilinear pseudoparabolic problem with integral conditions, Electron. J. Differ. Equ., 115, 1-18 (2006) · Zbl 1112.35115
[24] Soltanalizadeh, B.; Ghehsareh, H. R.; Yldrm, A.; Abbasbandy, S., On the analytic solution for a steady magnetohydrodynamic equation, Z. Naturforsch. A., 68a, 412-420 (2013)
[25] Babayar, B.; Soltanalizadeh, B., Numerical solution of nonlinear singular Volterra integral system by the Newton-product integration method, Math. Comput. modell., 58, 1696-1703 (2013) · Zbl 1327.65274
[26] Ortiz, E. L.; Samara, H., An operational approach to the Tau Method for the numerical solution of nonlinear differential equations, Computing, 27, 15-25 (1981) · Zbl 0449.65053
[27] Lanczos, C., Trigonometric interpolation of empirical and analytical functions, J. Math. Phys., 17, 123-199 (1938) · Zbl 0020.01301
[28] Liu, K. M.; Ortiz, E. L., Tau Method approximation of differential eigenvalue problems where the spectral parameter enters nonlinearly, J. Comput. Phys., 72, 299-310 (1987) · Zbl 0641.65067
[29] Hosseini, S. M.; Shahmorad, S., Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases, Appl. Math. Model., 27, 145-154 (2003) · Zbl 1047.65114
[30] Shahmorad, S., Numerical solution of the general form linear Fredholm-Volterra integro-differential equations by the Tau method with an error estimation, Appl. Math. Comput., 167, 1418-1429 (2005) · Zbl 1082.65602
[31] Parand, K.; Razzaghi, M., Rational Chebyshev tau method for solving Volterra’s population model, Appl. Math. Comput., 149, 893-900 (2004) · Zbl 1038.65149
[32] Ebadi, G.; Rahimi-Ardabili, MY.; Shahmorad, S., Numerical solution of the nonlinear Volterra integro-differential equations by the Tau method, Appl. Math. Comput., 188, 1580-1586 (2007) · Zbl 1119.65123
[33] Ortiz, E. L.; Pun, K. S., A bi-dimensional Tau-Elements Method for the numerical solution of nonlinear partial differential equations with an application to Burgers’ equation, Comp. Math. Appl. B, 12, 5/6, 1225-1240 (1986) · Zbl 0631.65120
[35] EL-Daou, M. K.; Khajah, H. G., Iterated solutions of linear operator equations with the Tau method, Math. Comput., 66, 217, 207-213 (1997) · Zbl 0855.47006
[36] Soltanalizadeh, B., Differential transformation method for solving one-space-dimensional telegraph equation, Comput. Appl. Math., 30, 3, 639-653 (2011) · Zbl 1243.35037
[37] Soltanalizadeh, B.; Zarebnia, M., Numerical analysis of the linear and nonlinear Kuramoto-Sivashinsky equation by using differential transformation method, Int. J. Appl. Math. Mech., 7, 12, 63-72 (2011) · Zbl 1431.35158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.