×

zbMATH — the first resource for mathematics

Block-sparsity regularized maximum correntropy criterion for structured-sparse system identification. (English) Zbl 1454.93055
Summary: This work deals with the block-sparse system identification problem on the basis of the maximum correntropy criterion (MCC). The MCC is known for its robustness against non-Gaussian noise and interference in many signal processing applications. With the aim of exploiting the block-sparse property of the system, we introduce a regularization function into the standard cost function of MCC. Based on the modified cost function, an online kernel adapting strategy is developed to further improve the estimation accuracy. Steady-state performance analysis is conducted to explore the behavior of the proposed method. The simulation results illuminate the validity of the theoretical analysis and confirm the superiority of the proposed method in block-sparse system identification through comparisons with state-of-the-art MCC techniques.
MSC:
93B30 System identification
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Haykin, S., Adaptive Filter Theory (2014), Pearson: Pearson Upper Saddle River, NJ
[2] Sayed, A. H., Adaptive Filters (2008), Wiley-Interscience IEEE Press: Wiley-Interscience IEEE Press Hoboken, N.J
[3] Liu, W.; Pokharel, P. P.; Principe, J. C., Correntropy: properties and applications in non-gaussian signal processing, IEEE Trans. Signal Process., 55, 11, 5286-5298 (2007) · Zbl 1390.94277
[4] Singh, A.; Principe, J. C., Using Correntropy as a cost function in linear adaptive filters, Proceedings of the International Joint Conference Neural Networks (IJCNN), 2950-2955 (2009)
[5] Singh, A.; Principe, J. C., Information theoretic learning with adaptive kernels, Signal Process., 91, 2, 203-213 (2011) · Zbl 1203.94001
[6] Chen, B.; Xing, L.; Zhao, H.; Zheng, N.; Principe, J. C., Generalized Correntropy for Robust Adaptive Filtering, IEEE Trans. Signal Process., 64, 13, 3376-3387 (2016) · Zbl 1414.94113
[7] Rajan, A.; Tepedelenlioğlu, C., Diversity Combining over Rayleigh Fading Channels with Symmetric Alpha-Stable Noise, IEEE Trans. Wirel. Commun., 9, 9, 2968-2976 (2010)
[8] Beaulieu, N. C.; Niranjayan, S., UWB receiver designs based on a gaussian-laplacian noise-plus-MAI model, IEEE Trans. Commun., 58, 3, 997-1006 (2010)
[9] Zhao, S.; Chen, B.; Principe, J. C., An adaptive kernel width update for correntropy, Proceedings of the International Joint Conference Neural Networks (IJCNN), 1-5 (2012)
[10] Huang, F.; Zhang, J.; Zhang, S., Adaptive filtering under a variable kernel width maximum correntropy criterion, IEEE Trans. Circuits Syst. II Express Br., 64, 10, 1247-1251 (2017)
[11] Shi, L.; Zhao, H.; Zakharov, Y., An Improved Variable Kernel Width for Maximum Correntropy Criterion Algorithm, IEEE Trans. Circuits Syst. II Express Br., 67, 7, 1339-1343 (2020)
[12] Berger, C. R.; Zhou, S.; Preisig, J. C.; Willett, P., Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From Subspace Methods to Compressed Sensing, IEEE Trans. Signal Process., 58, 3, 1708-1721 (2010) · Zbl 1392.94600
[13] Aubry, A.; Carotenuto, V.; Maio, A. D.; Govoni, M. A., Multi-Snapshot Spectrum Sensing for Cognitive Radar via Block-Sparsity Exploitation, IEEE Trans. Signal Process., 67, 6, 1396-1406 (2019) · Zbl 1415.94047
[14] Hu, X.; Tong, N.; Zhang, Y.; Huang, D., MIMO Radar Imaging With Nonorthogonal Waveforms Based on Joint-Block Sparse Recovery, IEEE Trans. Geosci. Remote Sens., 56, 10, 5985-5996 (2018)
[15] Ma, W.; Qu, H.; Gui, G.; Xu, L.; Zhao, J.; Chen, B., Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments, J. Frankl. Inst., 352, 7, 2708-2727 (2015) · Zbl 1395.93544
[16] Wang, Y.; Li, Y.; Albu, F.; Yang, R., Group-constrained maximum correntropy criterion algorithms for estimating sparse mix-noised channels, Entropy, 19, 8, 432 (2017)
[17] Wu, F.-Y.; Yang, K.; Hu, Y., Sparse estimator with ℓ_0-norm constraint kernel maximum-correntropy-criterion, IEEE Trans. Circuits Syst. II Express Briefs, 67, 2, 400-404 (2020)
[18] Li, Y.; Wang, Y.; Yang, R.; Albu, F., A soft parameter function penalized normalized maximum correntropy criterion algorithm for sparse system identification, Entropy, 19, 1, 45 (2017)
[19] Benesty, J.; Paleologu, C.; Ciochină, S., Proportionate adaptive filters from a basis pursuit perspective, IEEE Signal Process. Lett., 17, 12, 985-988 (2010)
[20] Duttweiler, D. L., Proportionate normalized least-mean-squares adaptation in echo cancelers, IEEE Trans. Speech Audio Process., 8, 5, 508-518 (2000)
[21] Benesty, J.; Gay, S. L., An improved PNLMS algorithm, Proceedings of the IEEE International Conference Acoustic Speech Signal Process, 2, 1881-1884 (2002)
[22] Paleologu, C.; Ciochina, S.; Benesty, J., An efficient proportionate affine projection algorithm for echo cancellation, IEEE Signal Process. Lett., 17, 2, 165-168 (2010)
[23] Albu, F.; Liu, J.; Grant, S. L., A fast filtering block-sparse proportionate affine projection sign algorithm, Proceedings of the IEEE International Conference Communications (COMM), 29-32 (2016)
[24] Gogineni, V. C.; Mula, S., Improved proportionate-type sparse adaptive filtering under maximum correntropy criterion in impulsive noise environments, Digit. Signal Process., 79, 190-198 (2018)
[25] Li, Y.; Wang, Y.; Albu, F.; Jiang, J., A general zero attraction proportionate normalized maximum correntropy criterion algorithm for sparse system identification, Symmetry, 9, 10, 229 (2017) · Zbl 1423.93094
[26] Wu, F.-Y.; Yang, K.; Sheng, X.; Huang, F., A blocked MCC estimator for group sparse system identification, AEU - Int. J. Electron. Commun., 115, 153033 (2020)
[27] 1-1
[28] Bach, F.; Jenatton, R.; Mairal, J.; Obozinski, G., Optimization with Sparsity-Inducing Penalties, Found. Trends Mach. Learn., 4, 1, 1-106 (2012) · Zbl 06064248
[29] Tropp, J. A., Algorithms for simultaneous sparse approximation. Part II: Convex relaxation, Signal Process., 86, 3, 589-602 (2006) · Zbl 1163.94395
[30] Eldar, Y. C.; Kuppinger, P.; Bolcskei, H., Block-Sparse Signals: Uncertainty Relations and Efficient Recovery, IEEE Trans. Signal Process., 58, 6, 3042-3054 (2010) · Zbl 1392.94195
[31] Chen, Y.; Hero, A. O., Recursive ℓ_1,∞ group lasso, IEEE Trans. Signal Process., 60, 8, 3978-3987 (2012) · Zbl 1393.94195
[32] Eksioglu, E. M., Group sparse RLS algorithms, Int. J. Adapt. Control Signal Process., 28, 12, 1398-1412 (2014) · Zbl 1334.93188
[33] Jiang, S.; Gu, Y., Block-Sparsity-Induced Adaptive Filter for Multi-Clustering System Identification, IEEE Trans. Signal Process., 63, 20, 5318-5330 (2015) · Zbl 1394.94260
[34] Wiesel, A.; Goldberg, J.; Messer-Yaron, H., SNR estimation in time-varying fading channels, IEEE Trans. Commun., 54, 5, 841-848 (2006)
[35] Yucek, T.; Arslan, H., MMSE Noise Plus Interference Power Estimation in Adaptive OFDM Systems, IEEE Trans. Veh. Technol., 56, 6, 3857-3863 (2007)
[36] Vega, L. R.; Rey, H.; Benesty, J.; Tressens, S., A New Robust Variable Step-Size NLMS Algorithm, IEEE Trans. Signal Process., 56, 5, 1878-1893 (2008) · Zbl 1390.94378
[37] Chen, B.; Xing, L.; Liang, J.; Zheng, N.; Príncipe, J. C., Steady-State Mean-Square Error Analysis for Adaptive Filtering under the Maximum Correntropy Criterion, IEEE Signal Process. Lett., 21, 7, 880-884 (2014)
[38] He, Y.; Wang, F.; Wang, S.; Cao, J.; Chen, B., Maximum correntropy adaptation approach for robust compressive sensing reconstruction, Inf. Sci., 480, 381-402 (2019) · Zbl 07257011
[39] Wang, Y.; Li, Y.; Yang, R., Sparse adaptive channel estimation based on mixed controlled l2 and lp-norm error criterion, J. Frankl. Inst., 354, 15, 7215-7239 (2017) · Zbl 1373.93333
[40] Yu, Y.; Zhao, H.; Chen, B., Sparse normalized subband adaptive filter algorithm with ℓ_0-norm constraint, J. Frankl. Inst., 353, 18, 5121-5136 (2016) · Zbl 1349.93385
[41] Zheng, Z.; Liu, Z., Influence of input noises on the mean-square performance of the normalized subband adaptive filter algorithm, J. Frankl. Inst., 357, 2, 1318-1330 (2020) · Zbl 1455.93200
[42] Su, G.; Jin, J.; Gu, Y.; Wang, J., Performance Analysis of ℓ_0-Norm Constraint Least Mean Square Algorithm, IEEE Trans. Signal Process., 60, 5, 2223-2235 (2012) · Zbl 1391.65112
[43] Shi, K.; Shi, P., Convergence analysis of sparse LMS algorithms with ℓ_1-norm penalty based on white input signal, Signal Process., 90, 12, 3289-3293 (2010) · Zbl 1197.94124
[44] Chen, Y.; Gu, Y.; Hero, A. O., Sparse LMS for system identification, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal, 3125-3128 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.