×

New aspects of fractional Biswas-Milovic model with Mittag-Leffler law. (English) Zbl 1423.35415

Summary: This article deals with a fractional extension of Biswas-Milovic (BM) model having Kerr and parabolic law nonlinearities. The BM model plays a key role in describing the long-distance optical communications. The fractional homotopy analysis transform technique (FHATM) is applied to examine the BM equation involving Atangana-Baleanu (AB) derivative of fractional order. The FHATM is constructed by using homotopy analysis technique, Laplace transform algorithm and homotopy polynomials. The numerical simulation work is performed with the aid of Maple software package. In order to demonstrate the effects of order of AB operator, variables and parameters on the displacement, the results are shown graphically. The outcomes of the present investigation are very encouraging and show that the AB fractional operator is very useful in mathematical modelling of natural phenomena.

MSC:

35R11 Fractional partial differential equations
35A22 Transform methods (e.g., integral transforms) applied to PDEs

Software:

Maple
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Biswas and D. Milovic, Bright and dark solitons of the generalized nonlinear Schrodinger’s equation. Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 1473-1484. · Zbl 1221.78033
[2] Q. Zhou, M. Ekici, A. Sonmezoglu and M. Mirzazadeh, Optical solitons with Biswas-Milovic equation by extended G′/G-expansion method. Optik127 (2016) 6277-6290. · Zbl 1355.78029
[3] Q. Zhou, Optical solitons for Biswas-Milovic model with Kerr law and parabolic law nonlinearities. Nonlinear Dyn. 84 (2016) 677-681.
[4] I. Ahmed, C. Mu and F. Zhang, Exact solution of the Biswas-Milovic equation by Adomian decomposition method. Int. J. Appl. Math. Res. 2 (2013) 418-422. · doi:10.14419/ijamr.v2i4.1158
[5] M. Mirzazadeh and A.H. Arnous, Exact solution of Biswas-Milovic equation using new efficient method. Elect. J. Math. Anal. Appl. 3 (2015) 139-146. · Zbl 1463.35430
[6] S. Ahmadian and M.T. Darvishi, A new fractional Biswas-Milovic model with its periodic soliton solutions. Optik Int. J. Light Electron Opt. 127 (2016) 7694-7703. · doi:10.1016/j.ijleo.2016.05.050
[7] Z. Korpinar and M. Inc, Numerical simulations for fractional variation of (1+1)-dimensional Biswas-Milovic equation. J. Light Electron Opt. 166 (2018) 77-85. · doi:10.1016/j.ijleo.2018.02.099
[8] R.L. Magin, Fractional Calculus in Bioengineering. Begell House Inc., New York (2006).
[9] I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999). · Zbl 0924.34008
[10] D. Kumar, J. Singh and D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves. Math. Methods Appl. Sci. 40 (2017) 5642-5653. · Zbl 1388.35212 · doi:10.1002/mma.4414
[11] L. Vázquez, From Newton’s equation to fractional diffusion and wave equations. Adv. Differ. Equ. 2011 (2011) 169421. · Zbl 1213.26012
[12] M. Bonforte, Y. Sire and J.L. Vázquez, Optimal existence and uniqueness theory for the fractional heat equation. Nonlinear Anal. 153 (2017) 142-168. · Zbl 1364.35416 · doi:10.1016/j.na.2016.08.027
[13] R.L. Magin, Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59 (2010) 1586-1593. · Zbl 1189.92007
[14] A. Atangana and B.T. Alkahtani, Analysis of non-homogenous heat model with new trend of derivative with fractional order. Chaos Solitons Fractals89 (2016) 566-571. · Zbl 1360.35080
[15] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1 (2015) 73-85.
[16] C.M.A. Pinto, Persistence of low levels of plasma viremia and of the latent reservoir in patients under ART: a fractional-order approach. Commun. Nonlinear Sci. Num. Simul. 43 (2017) 251-260. · Zbl 1465.92034 · doi:10.1016/j.cnsns.2016.07.009
[17] X.J. Yang, H.M. Srivastava, D.F. Torres and Y. Zhang, Non-differentiable solutions for local fractional nonlinear Riccati differential equations. Fund. Inform. 151 (2017) 409-417. · Zbl 1379.34015 · doi:10.3233/FI-2017-1500
[18] A. Prakash, M. Kumar and D. Baleanu, A new iterative technique for a fractional model of nonlinear Zakharov-Kuznetsov equationsvia Sumudu transform. Appl. Math. Comput. 334 (2018) 30-40. · Zbl 1427.65322
[19] A. Prakash and H. Kaur, Numerical solution for fractional model of Fokker-Planck equation by using q-HATM. Chaos Solitons Fractals105 (2017) 99-110. · Zbl 1380.35154
[20] A. Prakash, M. Kumar and K.K. Sharma, Numerical method for solving coupled Burgers equation. Appl. Math. Comput. 260 (2015) 314-320. · Zbl 1410.65413
[21] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. A Wiley-Interscience Publication, John Wiley and Sons, New York, Chichester, Brisbane, Toronto and Singapore (1993). · Zbl 0789.26002
[22] M. Caputo, Elasticita e Dissipazione. Zani-Chelli, Bologna (1969).
[23] X.J. Yang, Advanced Local Fractional Calculus and Its Applications. World Science, New York, NY (2012).
[24] A. Atangana and D. Baleanu, New fractional derivative with nonlocal and non-singular kernel, theory and application to heat transfer model. Therm. Sci. 20 (2016) 763-769. · doi:10.2298/TSCI160111018A
[25] A. Atangana and B.S.T. Alkahtani, New model for process of phase separation in iron alloys. Iran. J. Sci. Technol. 42 (2018) 1351-1356. · doi:10.1007/s40995-016-0114-8
[26] K.M. Saad, A. Atangana and D. Baleanu, New fractional derivatives with non-singular kernel applied to the Burgers equation. Chaos28 (2018) 063109. · Zbl 1394.35565
[27] J. Singh, D. Kumar and D. Baleanu, On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type kernel. Chaos 27 (2017) 103113. · Zbl 1390.34027
[28] D. Kumar, J. Singh and D. Baleanu, A new analysis of Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler type kernel. Eur. J. Phys. Plus133 (2018) 70. · doi:10.1140/epjp/i2018-11934-y
[29] D. Kumar, J. Singh and D. Baleanu, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel. Physica A492 (2018) 155-167. · Zbl 1514.35463
[30] J.F. Gómez-Aguilar, Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel. Physica A465 (2017) 562-572. · Zbl 1400.82228
[31] B.S.T. Alkahtani, A. Atangana and I. Koca, A new nonlinear triadic model of predator prey based on derivative with non-local and non-singular kernel. Adv. Mech. Eng. 8 (2016) 19.
[32] A. Coronel-Escamilla, J.F. Gómez-Aguilar, L. Torres and R.F. Escobar-Jiménez, A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Physica A491 (2018) 406-424. · Zbl 1514.65100
[33] A. Atangana and G.F. Gómez-Aguilar, Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals114 (2018) 516-535. · Zbl 1415.34010
[34] K.M. Saad, Comparing the Caputo, Caputo-Fabrizio and Atangana-Baleanu derivative with fractional order: fractional cubic isothermal auto-catalytic chemical system. Eur. Phys. J. Plus133 (2018) 49.
[35] K. M. Saad and J.F. Gómez-Aguilar, Analysis of reaction diffusion system via a new fractional derivative with non-singular kernel. Physica A509 (2018) 703-716. · Zbl 1514.35469
[36] K. M. Saad, D. Baleanu and A. Atangana, New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger’s equations. Comp. Appl. Math. 37 (2018) 5203-5216. · Zbl 1432.35229 · doi:10.1007/s40314-018-0627-1
[37] M. Khan, M.A. Gondal, I. Hussain and S.K. Vanani, A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on semi-infinite domain. Math. Comput. Model. 55 (2012) 1143-1150. · Zbl 1255.65186
[38] J. Singh, M.M. Rashidi, Sushila, D. Kumar, A hybrid computational approach for Jeffery-Hamel flow in non-parallel walls. To appear in: Neural Comput. Appl. DOI: (2017).
[39] D. Kumar, J. Singh and D. Baleanu, A fractional model of convective radial fins with temperature-dependent thermal conductivity. Roman. Rep. Phys. 69 (2017) 103.
[40] D. Kumar, R.P. Agarwal and J. Singh, A modified numerical scheme and convergence analysis for fractional model of Lienard’s equation. J. Comput. Appl. Math. 339 (2018) 405-413. · Zbl 1404.34007 · doi:10.1016/j.cam.2017.03.011
[41] D. Kumar, J. Singh, D. Baleanu and S. Rathore, Analysis of a fractional model of Ambartsumian equation. Eur. J. Phys. Plus133 (2018) 259. · doi:10.1140/epjp/i2018-12081-3
[42] Z. Odibatand S.A. Bataineh, An adaptation of homotopy analysis method for reliable treatment of strongly nonlinear problems: construction of homotopy polynomials. Math. Meth. Appl. Sci. 38 (2015) 991-1000. · Zbl 1318.34021 · doi:10.1002/mma.3136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.