×

On the dynamics of the angular momentum of a quantum pendulum. (English) Zbl 1440.81036

Summary: The Mathieu-Schrödinger equation, which describes the behavior of a quantum pendulum, depending on the value of the parameter \(l\) (pendulum filament length), can have the symmetry of the Klein’s four-group or its invariant subgroups. The paper shows that the mean values of z-components of the angular momentum of nondegenerate quantum states (the symmetry region of the four-group) tend to zero and their root mean square fluctuations are non-zero. Consequently, in this region of parameter values, the fluctuations overlap the mean values of the angular momentum and they become indistinguishable. Therefore, it can be argued that if, with an increase in the parameter, the system goes into a non-degenerate state, then after the inversion of the parameter change and the transition to the region of degenerate states, the initial states will not be restored. This behavior of the average values of angular momenta is caused by the combined actions of two factors: discontinuous change in the system at the points of change of its symmetry and the presence of quantum fluctuations in nondegenerate states.
©2020 American Institute of Physics

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
34C60 Qualitative investigation and simulation of ordinary differential equation models
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sagdeev, R. Z.; Usikov, D. A.; Zaslavsky, G. M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos (1988), Harwood Academic Publisher: Harwood Academic Publisher, New York · Zbl 0709.58003
[2] Gutzwiller, M. C., Chaos in Classical and Quantum Mechanics (1990), Springer-Verlag: Springer-Verlag, New York · Zbl 0727.70029
[3] Reichl, L., The Transition to Chaos in Conservation Classical Systems: Quantum Manifestations (1992), Springer-Verlag: Springer-Verlag, New York · Zbl 0776.70003
[4] Zaslavsky, G., The Physics of Chaos in Hamiltonian Systems (2007), Imperial College Press · Zbl 1126.37020
[5] Saif, F., Phys. Rep., 419, 207 (2005) · doi:10.1016/j.physrep.2005.07.002
[6] Aldrovandi, R.; Ferreira, P. L., Am. J. Phys., 48, 660 (1980) · doi:10.1119/1.12332
[7] Cook, G. P.; Zailin, C. S., Am. J. Phys., 54, 259 (1986) · doi:10.1119/1.14640
[8] Baker, G. L.; Blackburn, J. A.; Smith, H. J. T., Am. J. Phys., 70, 525 (2002) · doi:10.1119/1.1456069
[9] Erconali, D., J. Cem. Ed., 77, 1495 (2000) · doi:10.1021/ed077p1495
[10] Ugulava, A.; Chotorlishvili, L.; Gvardjaladze, T.; Chkhaidze, S., Mod. Phys. Lett. B, 21, 415 (2007) · Zbl 1144.82323 · doi:10.1142/S0217984907012840
[11] Ugulava, A.; Toklikishvili, Z.; Chkhaidze, S.; Chotorlishvili, L.; Abramishvili, R., J. Math. Phys., 53, 034206 (2012) · Zbl 1276.81128 · doi:10.1063/1.4729247
[12] Saif, F., Phys. Rev. A, 65, 013401 (2001) · doi:10.1103/PhysRevA.65.013401
[13] Ugulava, A.; Chotorlishvili, L.; Nikoladze, K., Phys. Rev. E, 68, 026216 (2003) · doi:10.1103/PhysRevE.68.026216
[14] Ugulava, A.; Chotorlishvili, L.; Nikoladze, K., Phys. Rev. E, 70, 026219 (2004) · doi:10.1103/PhysRevE.70.026219
[15] Ugulava, A.; Chotorlishvili, L.; Nikoladze, K., Phys. Rev. E, 71, 056211 (2005) · doi:10.1103/PhysRevE.71.056211
[16] Dyrting, S.; Milburn, J. G., Phys. Rev. A, 47, R2484 (1993) · doi:10.1103/PhysRevA.47.R2484
[17] Muller, H.; Shiow, S., Phys. Rev. A, 77, 023609 (2008) · doi:10.1103/PhysRevA.77.023609
[18] Feranchuk, I. D.; Leonov, A. V., Phys. Lett. A, 373, 517 (2009) · Zbl 1227.81273 · doi:10.1016/j.physleta.2008.12.006
[19] Aronstein, D. L.; Stroud, C. R., Phys. Rev. A, 62, 22102 (2000) · doi:10.1103/PhysRevA.62.022102
[20] Eberly, J. H.; Narozhny, N. B.; Sanches-Mondragon, J. J., Phys. Rev. Lett. A, 44, 1323 (1980) · Zbl 1404.81338 · doi:10.1103/PhysRevLett.44.1323
[21] Chotorlisvili, L.; Ugulava, A., Physica D, 239, 103 (2010) · Zbl 1190.37031 · doi:10.1016/j.physd.2009.08.017
[22] Veilande, R.; Bersons, I., J. Phys. B, 40, 2111 (2007) · doi:10.1088/0953-4075/40/11/013
[23] Doncheski, M. A.; Robinnet, R. W., Ann. Phys., 308, 578 (2003) · Zbl 1037.81027 · doi:10.1016/S0003-4916(03)00171-4
[24] Jähnke, E.; Emde, F.; Lösch, F., Tables of Higher Functions (1960), McGraw-Hill: McGraw-Hill, New York · Zbl 0087.12801
[25] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, DC, 1964). · Zbl 0171.38503
[26] Bateman, L. H.; Erdelyi, A., Higher Transendental Functions (1955), McGraw-Hill Book Company: McGraw-Hill Book Company, New York · Zbl 0064.06302
[27] Landau, L. D.; Lifshitz, E. M., Course of Theoretical Physics. v.3. Quantum Mechanics. Non-relativistic Theory (1977), Pergamon Press: Pergamon Press, Oxford
[28] Hamermesh, M., Group Theory and its Application to Physical Problems (1964), Addison-Wesley: Addison-Wesley, Reading, MA · Zbl 0151.34101
[29] Chotorlisvili, L.; Zieba, P.; Tralle, I.; Ugulava, A.; Berakdar, J., J. Phys. A Math. Theor., 51, 035004 (2018) · Zbl 1383.82029 · doi:10.1088/1751-8121/aa9a2c
[30] Tables Relating to Mathieu Functions: Characteristic Values, Coefficients, and Joining Factors (Columbia University Press, New York, 1951). · Zbl 0045.40109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.