×

Untangling the nonlinearity in inverse scattering with data-driven reduced order models. (English) Zbl 1507.65160

Summary: The motivation of this work is an inverse problem for the acoustic wave equation, where an array of sensors probes an unknown medium with pulses and measures the scattered waves. The goal of the inversion is to determine from these measurements the structure of the scattering medium, modeled by a spatially varying acoustic impedance function. Many inversion algorithms assume that the mapping from the unknown impedance to the scattered waves is approximately linear. The linearization, known as the Born approximation, is not accurate in strongly scattering media, where the waves undergo multiple reflections before they reach the sensors in the array. Thus, the reconstructions of the impedance have numerous artifacts. The main result of the paper is a novel, linear-algebraic algorithm that uses a reduced order model (ROM) to map the data to those corresponding to the single scattering (Born) model. The ROM construction is based only on the measurements at the sensors in the array. The ROM is a proxy for the wave propagator operator, that propagates the wave in the unknown medium over the duration of the time sampling interval. The output of the algorithm can be input into any off-the-shelf inversion software that incorporates state of the art linear inversion algorithms to reconstruct the unknown acoustic impedance.

MSC:

65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
35C20 Asymptotic expansions of solutions to PDEs
35P25 Scattering theory for PDEs
35R30 Inverse problems for PDEs
76Q05 Hydro- and aero-acoustics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alonso, R.; Borcea, L.; Papanicolaou, G.; Tsogka, C., Detection and imaging in strongly backscattering randomly layered media, Inverse Problems, 27, (2011) · Zbl 1208.78011 · doi:10.1088/0266-5611/27/2/025004
[2] Aubry, A.; Derode, A., Detection and imaging in a random medium: a matrix method to overcome multiple scattering and aberration, J. Appl. Phys., 106, (2009) · doi:10.1063/1.3200962
[3] Belishev, M. I., Recent progress in the boundary control method, Inverse Problems, 23, R1, (2007) · Zbl 1126.35089 · doi:10.1088/0266-5611/23/5/R01
[4] Beylkin, G., Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26, 99-108, (1985) · doi:10.1063/1.526755
[5] Beylkin, G.; Burridge, R., Linearized inverse scattering problems in acoustics and elasticity, Wave Motion, 12, 15-52, (1990) · Zbl 0706.73031 · doi:10.1016/0165-2125(90)90017-X
[6] Biondi, B., 3D Seismic Imaging, (2006), Tulsa, OK: Society of Exploration Geophysicists, Tulsa, OK
[7] Borcea, L.; Del Cueto, F. G.; Papanicolaou, G.; Tsogka, C., Filtering random layering effects in imaging, Multiscale Model. Simul., 8, 751-781, (2010) · Zbl 1197.35313 · doi:10.1137/090760854
[8] Borcea, L.; del Cueto, F. G.; Papanicolaou, G.; Tsogka, C., Filtering deterministic layer effects in imaging, SIAM Rev., 54, 757-798, (2012) · Zbl 1254.35240 · doi:10.1137/120880975
[9] Borcea, L.; Druskin, V.; Knizhnerman, L., On the continuum limit of a discrete inverse spectral problem on optimal finite difference grids, Commun. Pure Appl. Math., 58, 1231-1279, (2005) · Zbl 1079.65084 · doi:10.1002/cpa.20073
[10] Borcea, L.; Druskin, V.; Mamonov, A. V.; Zaslavsky, M., A model reduction approach to numerical inversion for a parabolic partial differential equation, Inverse Problems, 30, (2014) · Zbl 1323.35207 · doi:10.1088/0266-5611/30/12/125011
[11] Borcea, L.; Druskin, V.; Vasquez, F. G.; Mamonov, A., Resistor network approaches to electrical impedance tomography, Inverse Problems Appl., 60, 55-118, (2011) · Zbl 1316.65096
[12] Borcea, L.; Papanicolaou, G.; Tsogka, C., Adaptive time-frequency detection and filtering for imaging in heavy clutter, SIAM J. Imaging Sci., 4, 827-849, (2011) · Zbl 1237.78001 · doi:10.1137/100806734
[13] Bube, K. P.; Burridge, R., The one-dimensional inverse problem of reflection seismology, SIAM Rev., 25, 497-559, (1983) · Zbl 0532.73029 · doi:10.1137/1025122
[14] Burridge, R., The Gelfand–Levitan, the Marchenko, and the Gopinath–Sondhi integral equations of inverse scattering theory, regarded in the context of inverse impulse-response problems, Wave Motion, 2, 305-323, (1980) · Zbl 0444.45010 · doi:10.1016/0165-2125(80)90011-6
[15] Cheney, M.; Borden, B., Fundamentals of Radar Imaging, vol 79, (2009), Philadelphia, PA: SIAM, Philadelphia, PA
[16] Chu, M. T.; Golub, G. H., Structured inverse eigenvalue problems, Acta Numer., 11, 1, (2002) · Zbl 1105.65326 · doi:10.1017/S0962492902000016
[17] da Costa Filho, C. A.; Ravasi, M.; Curtis, A.; Meles, G. A., Elastodynamic green’s function retrieval through single-sided marchenko inverse scattering, Phys. Rev. E, 90, (2014)
[18] de Hoop, M.; Kepley, P.; Oksanen, L., Recovery of a smooth metric via wave field and coordinate transformation reconstruction, (2017)
[19] Delprat-Jannaud, F.; Lailly, P., A fundamental limitation for the reconstruction of impedance profiles from seismic data, Geophysics, 70, R1-R14, (2005) · doi:10.1190/1.1852784
[20] Drinkwater, B. W.; Wilcox, P. D., Ultrasonic arrays for non-destructive evaluation: a review, NDT E Int., 39, 525-541, (2006) · doi:10.1016/j.ndteint.2006.03.006
[21] Druskin, V.; Guttel, S.; Knizhnerman, L., Near-optimal perfectly matched layers for indefinite helmholtz problems, SIAM Rev., 58, 90-116, (2016) · Zbl 1344.35009 · doi:10.1137/140966927
[22] Druskin, V.; Knizhnerman, L., Gaussian spectral rules for the three-point second differences: I. A two-point positive definite problem in a semi-infinite domain, SIAM J. Numer. Anal., 37, 403-422, (1999) · Zbl 0947.65127 · doi:10.1137/S0036142997330792
[23] Druskin, V.; Mamonov, A. V.; Thaler, A. E.; Zaslavsky, M., Direct, nonlinear inversion algorithm for hyperbolic problems via projection-based model reduction, SIAM J. Imaging Sci., 9, 684-747, (2016) · Zbl 1346.86007 · doi:10.1137/15M1039432
[24] Druskin, V.; Mamonov, A. V.; Zaslavsky, M., Multiscale S-fraction reduced-order models for massive wavefield simulations, Multiscale Model. Simul., 15, 445-475, (2017) · Zbl 1422.65231 · doi:10.1137/16M1072103
[25] Druskin, V.; Mamonov, A. V.; Zaslavsky, M., A nonlinear method for imaging with acoustic waves via reduced order model backprojection, SIAM J. Imaging Sci., 11, 164-196, (2018) · doi:10.1137/17M1133580
[26] Dyukarev, Y. M., Indeterminacy criteria for the stieltjes matrix moment problem, Math. Notes, 75, 66-82, (2004) · Zbl 1110.47301 · doi:10.1023/B:MATN.0000015022.02925.bd
[27] Fomel, S.; Landa, E.; Taner, M. T., Poststack velocity analysis by separation and imaging of seismic diffractions, Geophysics, 72, U89-U94, (2007)
[28] Gallivan, K.; Grimme, E.; Sorensen, D.; Van Dooren, P., On some modifications of the Lanczos algorithm and the relation with Padé approximations, Math. Res., 87, 87-116, (1996) · Zbl 1075.93506
[29] Gallivan, K.; Grimme, G.; Van Dooren, P., A rational Lanczos algorithm for model reduction, Numer. Algorithms, 12, 33-63, (1996) · Zbl 0870.65053 · doi:10.1007/BF02141740
[30] Gel’fand, I. M.; Levitan, B. M., On the Determination of a Differential Equation from its Spectral Function, 253-304, (1955), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0066.33603
[31] Golub, H. G.; Van Loan, C. F., Matrix Computations, (1996), Baltimore, MD: The Johns Hopkins University Press, Baltimore, MD · Zbl 0865.65009
[32] Gopinath, B.; Sondhi, M., Inversion of the telegraph equation and the synthesis of nonuniform lines, Proc. IEEE, 59, 383-392, (1971) · doi:10.1109/PROC.1971.8179
[33] Habashy, T. M., A generalized Gel’fand–Levitan–Marchenko integral equation, Inverse Problems, 7, 703, (1991) · Zbl 0739.35098 · doi:10.1088/0266-5611/7/5/004
[34] Jannane, M., Wavelengths of earth structures that can be resolved from seismic reflection data, Geophysics, 54, 906-910, (1989) · doi:10.1190/1.1442719
[35] Kabanikhin, S. I.; Shishlenin, M. A., Numerical algorithm for two-dimensional inverse acoustic problem based on Gel’fand–Levitan–Krein equation, J. Inverse Ill-Posed Problems, 18, 979-995, (2011) · Zbl 1279.35066
[36] Kac, I.; Krein, M., On the spectral functions of the string, Am. Math. Soc. Transl., 103, 19-102, (1974) · Zbl 0291.34017
[37] Krein, M. G., Solution of the inverse Sturm–Liouville problem, Dokl. Akad. Nauk SSSR, 76, 21-24, (1951)
[38] Krein, M. G., On the transfer function of a one-dimensional boundary problem of second order, Dokl. Akad. Nauk SSSR, 88, 405-408, (1953)
[39] Liu, Z.; Bleistein, N., Migration velocity analysis: theory and an iterative algorithm, Geophysics, 60, 142-153, (1995) · doi:10.1190/1.1443741
[40] Malcolm, A. E.; de Hoop, M. V., A method for inverse scattering based on the generalized bremmer coupling series, Inverse Problems, 21, 1137, (2005) · Zbl 1071.35127 · doi:10.1088/0266-5611/21/3/021
[41] Malcolm, A. E.; de Hoop, M. V.; Calandra, H., Identification of image artifacts from internal multiples, Geophysics, 72, S123-S132, (2007) · doi:10.1190/1.2434780
[42] Malcolm, A. E.; Ursin, B.; De Hoop, M. V., Seismic imaging and illumination with internal multiples, Geophys. J. Int., 176, 847-864, (2009) · doi:10.1111/j.1365-246X.2008.03992.x
[43] Marchenko, V. A., Some problems in the theory of one-dimensional second-order differential operators, Dokl. Akad. Nauk. SSSR, 2, 457-560, (1950)
[44] Meles, G. A.; Wapenaar, K.; Curtis, A., Reconstructing the primary reflections in seismic data by marchenko redatuming and convolutional interferometry, Geophysics, 81, Q15-Q26, (2016) · doi:10.1190/geo2015-0377.1
[45] Moskow, S.; Kilgore, K.; Schotland, J. C., Inverse Born series for scalar waves, J. Comput. Math., 30, 601-614, (2012) · Zbl 1289.78006 · doi:10.4208/jcm.1205-m3935
[46] Parlett, B. N., The Symmetric Eigenvalue Problem, (1998), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 0885.65039
[47] A linearised inverse problem for the wave equation, Commun. PDE, 13, 573-601, (1988) · Zbl 0671.35078 · doi:10.1080/03605308808820553
[48] Rivlin, T. J., Chebyshev Polynomials, (1990), New York: Wiley, New York
[49] Santosa, F., Numerical scheme for the inversion of acoustical impedance profile based on the Gelfand–Levitan method, Geophys. J. Int., 70, 229-243, (1982) · Zbl 0539.73019 · doi:10.1111/j.1365-246X.1982.tb06402.x
[50] Stolk, C. C.; Symes, W. W., Smooth objective functionals for seismic velocity inversion, Inverse Problems, 19, 73, (2002) · Zbl 1136.86305 · doi:10.1088/0266-5611/19/1/305
[51] Symes, W., Inverse boundary value problems and a theorem of Gel’fand and Levitan, J. Math. Anal. Appl., 71, 379-402, (1979) · Zbl 0425.35092 · doi:10.1016/0022-247X(79)90199-9
[52] Symes, W. W., Mathematics of reflection seismology. The Rice Inversion Project, Department of Computational and Applied Mathematics, Rice University, (1995)
[53] Symes, W. W., The seismic reflection inverse problem, Inverse Problems, 25, (2009) · Zbl 1181.35338 · doi:10.1088/0266-5611/25/12/123008
[54] Therrien, C. W., Discrete Random Signals and Statistical Signal Processing, (1992), Englewood Cliffs, NJ: Prentice Hall, Englewood Cliffs, NJ · Zbl 0747.94004
[55] Uhlmann, G., Travel time tomography, J. Korean Math. Soc., 38, 711-722, (2001) · Zbl 1021.86003
[56] Wapenaar, K.; Broggini, F.; Slob, E.; Snieder, R., Three-dimensional single-sided Marchenko inverse scattering, data-driven focusing, Greens function retrieval, and their mutual relations, Phys. Rev. Lett., 110, (2013) · doi:10.1103/PhysRevLett.110.084301
[57] Wapenaar, K.; Thorbecke, J.; Van Der Neut, J.; Broggini, F.; Slob, E.; Snieder, R., Marchenko imaging, Geophysics, 79, WA39-WA57, (2014) · doi:10.1190/geo2013-0302.1
[58] Weglein, A. B., Multiple attenuation: an overview of recent advances and the road ahead, Leading Edge, 18, 40-44, (1999) · doi:10.1190/1.1438150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.